参数
属性 | 数值 |
化学式 | Cr4+:Y3Al5O12 |
晶体结构 | cubic – la3d |
晶格参数Å | 12.01 |
取向 | [100] or [110] < ±0.5° |
质量密度 | 4.56 g/cm3 |
莫氏硬度 | 8.5 |
杨氏模量 | 335 GPa |
抗拉强度 | 2 GPa |
熔点 | 1970°C |
导热系数 | 0.1213 |
比热/(J·g-1·K-1) | 0.59 |
热膨胀/(10-6 /°C @ 25°C) | 7.8 <111> |
7.7 <110> | |
8.2 <100> | |
抗热震参数 | 800 W/m |
消光比 | 25dB |
泊松比 | 0.25 |
折射率@ 1064 nm | 1.83 |
电荷补偿离子 | Ca2+, Mg2+ |
属性 | 数值 |
光密度 | 0.1 to 0.8 |
荧光寿命 | 3.4μs |
浓度 | 0.5 mol % ~ 3 mol % |
发射波长 | 1350 nm ~ 1600 nm |
吸收系数 | 1.0 cm-1 ~ 7 cm-1 |
基态吸收截面 | 4.3×10-18 cm2 |
发射态吸收截面 | 8.2×10-19 cm2 |
传输 | 10% to 90% |
涂层 | AR≤ 0.2% @1064nm |
损伤阈值 | > 500 MW / cm2 |
属性 | 数值 |
方向公差 | < 0.5° |
厚度/直径公差 | ±0.05 mm |
表面平整度 | <λ/8@632 nm |
波前失真 | <λ/4@632 nm |
表面质量 | 5-Oct |
平行 | 10〞 |
垂直 | 5ˊ |
通光孔径 | >90% |
倒角 | <0.1×45° |
HR涂层 | <= 0.2% (@ 1340nm) |
最大尺寸 | 2*2-15*15 mm×20mm |
案例
特点
应用
参考文献
新闻
案例
Cr:YAG晶体用于1064nm激光器
镀膜:AR@1064nm,R<0.2%;
损伤阈值大于1GW;
牢固度要通过军品环境试验;
Cr:YAG晶体案例(二)
尺寸:5*5*0.95mm;
T0=95%;
镀膜:AR/AR@1064nm;
Cr:YAG晶体案例(三)
规格:Φ10×3 mm;
初始透过率: T0=55%±1%, T0=65%±1%;
镀膜: AR/AR@1064nm, R<0.2%
Cr:YAG晶体案例(四)
直径: φ7mm;
初始透过率: T0 = 40%;
镀膜:双面AR镀膜, R≤ 0.2% (@1064nm)
Cr:YAG晶体案例(五)
规格:φ7×2.8 mm;
双面 AR 镀膜, R: ≤0.2% (@ 1064nm)
特点
- 高导热率
- 高损伤阈值(> 500MW/cm2)
- 优异的理化特性
- 辐射稳定性
应用
参考文献
[1] Saiki T , Nakatsuka M , Fujioka K , et al. Cross-relaxation and spectral broadening of gain for Nd/Cr:YAG ceramic lasers with white-light pump source under high-temperature operation[J]. Optics Communications, 2011, 284(12):2980-2984. |
[2] Saiki T , Funahashi K , Motokoshi S , et al. Temperature characteristics of small signal gain for Nd/Cr:YAG ceramic lasers[J]. Optics Communications, 2009, 282(4):614-616. |
[3] Wu Y , Jiang L , Qiu F , et al. Fabrication of transparent Yb,Cr:YAG ceramics by a solid-state reaction method[J]. Ceramics International, 2006, 32(7):785-788. |
[4] Jiying, Peng, Yi, et al. Passively Q-switched mode locking in a compact Nd:GdVO4/Cr:YAG self-Raman laser[J]. Optics Communications, 2012, 285(24):5334-5336. |
[5] Peng J Y , Zheng Y , Shi Y X , et al. Passively Q-switched a -cut Nd:GdVO 4 self-Raman laser with Cr:YAG[J]. Optics & Laser Technology, 2012, 44( 7):2175-2177. |
[6] A low viscosity slurry system for fabricating chromium doped yttrium aluminum garnet (Cr:YAG) transparent ceramics[J]. Journal of the European Ceramic Society, 2015, 35(14):S095522191530025X. |
[7] Yi X , Zhou S , Chen C , et al. Fabrication of Ce:YAG, Ce,Cr:YAG and Ce:YAG/Ce,Cr:YAG dual-layered composite phosphor ceramics for the application of white LEDs[J]. Ceramics International, 2014, 40(5):7043-7047. |
[8] Honda Y , Motokoshi S , Jitsuno T , et al. Temperature dependence of optical properties in Nd/Cr:YAG materials[J]. Journal of Luminescence, 2014, 148:342-346. |
[9] Lin, Hong-Yi, Sun, et al. Comparative study between Nd:GYSGG and Nd:YAG lasers passively Q-switched by a Cr:YAG crystal[J]. Journal for Light and Electronoptic, 2018. |
[10] Villafana-Rauda E , R Chiu, Mora-Gonzalez M , et al. Dynamics of a Q-switched Nd:YVO4/Cr:YAG laser under periodic modulation[J]. Results in Physics, 2018, 12. |
[11] Chen X , Lu T , Wei N , et al. Fabrication and photoluminescence properties of Cr:YAG and Yb,Cr:YAG transparent ceramic[J]. Optical Materials, 2015, 49:330-336. |
[12] Cafiso S , Ugolotti E , Schmidt A , et al. Sub-100-fs mode-locking of the Cr:YAG laser using monolayer graphene saturable absorber[C]// Cleo. IEEE, 2013. |
[13] Bernard J E , Alcock A J , Chepurov S V , et al. Measurement of the frequency of acetylene transitions at 1540 nm with a mode-locked Cr:YAG laser[C]// Leos Summer Topical Meetings. IEEE, 2005. |
[14] Chen J C , Lo C Y , Huang K Y , et al. Mapping of Cr ions and refraction index profile in Cr:YAG crystal fiber with double-cladding structure[J]. Annals of Physical and Rehabilitation Medicine, 2004. |
[15] Jaspan M A , Welford D , Xiao G , et al. Atypical behavior of Cr:YAG passively Q-switched Nd:YVO4 microlasers at high-pumping rates[J]. Filtration Industry Analyst, 2000. |
[16] Lin J H , MD Wei, Hsu H H , et al. High peak power output of a diode-pumped Q-switched and mode locked Nd:LuVO4 with Cr:YAG saturable absorber[C]// Conference on Lasers & Electro-optics-pacific Rim. IEEE, 2007. |
[17] Dong J , Shirakawa A , Ueda K I , et al. Composite Yb:YAG/Cr:YAG ceramics self-Q-switched laser[C]// Conference on Lasers & Electro-optics. IEEE, 2008. |
[18] Sorokin E , Naumov S , Kalashnikov V L , et al. Spectral broadening of 50 fs Cr:YAG pulses around 1.5 /spl mu/m in the tapered fiber. 2003. |
[19] D Welford, Jaspan M A . Single-frequency operation of a Cr:YAG laser from 1332 to 1554 nm[J]. Journal of the Optical Society of America B, 2004, 21(12):2137-2141. |
[20] Saiki T , Imasaki K , Motokoshi S , et al. Oscillation Property of Disk-Type Nd/Cr:YAG Ceramic Lasers with Quasi-Solar Pumping[C]// Conference on Lasers & Electro-optics. American Institute of Physics, 2006. |
[21] Lo C Y , Tu S Y , Huang K Y , et al. Fused-silica-clad Cr:YAG fiber. IEEE, 2003. |
[22] Tsunekane, Taira. High temperature operation of passively Q-switched, Cr:YAG/Nd:YAG micro-laser for ignition of engines. IEEE, 2009. |
[23] Cho W B , Schmidt A , Sun Y C , et al. Carbon-Nanotube Mode-Locked Cr:YAG Laser[C]// Lasers & Electro-optics. IEEE, 2010. |
新闻
发表回复