Nd:YAG是在YAG晶体中掺入Nd离子得到的成熟的激光晶体之一。Nd:YAG激光晶体的吸收带宽分别为730-760nm和790-820nm,通常采用闪光灯或半导体激光器泵浦。典型的激光发射峰值为1064nm,通过一些措施也可以发射946nm、1120nm、1320nm和1440nm的激光,通过调Q和锁模分别获得不同波长(532nm、266nm、213nm等)和脉冲宽度(10-25ns)的激光,在生物物理、医学、军事、机械、科研和建筑等领域中有着巨大的应用。一般来说,脉冲激光采用高浓度掺杂晶体,连续波输出采用低浓度掺杂晶体。
工业用Nd:YAG激光器
。Nd:YAG的吸收取决于带宽。通常用闪光管或激光二极管来实现。它非常有效,并且可以永远提供高质量的结果。它很容易适应取决于研究模型的庞大应用。最常见的是带有脉冲效应的深度晶体。当然,它集中于分别与生物物理学等一起发展。它通常是由对工业用途具有高范围影响的发射峰制成的。
Nd:YAG晶体通常泵浦很多激光发射峰,并具有锁定模式。对于闪光管或激光二极管,它分别具有重要的配置。因此,它对于找出脉宽以及其他脉宽都起着有效的作用。低浓度掺杂的晶体。通常,它基本上是在具有不同波长的激光器上捕获的。它获得了最新技术所证明的系数。通过发现机械和物理特性,可以很好地适应它们。通过提供出色的光源,它具有很宽的吸收带宽。具有高增益系数的低持久阈值是通过光源访问的。
参数
钕浓度公差(atm%) | 0.1- 2.5(+/-0.1)atm% |
取向 | [001] or [110] or [111] <±0.5° |
平行性 | 10〞 |
垂直性 | 5ˊ |
表面质量 | 10-5(MIL-O-13830A) |
波前失真 | λ/4@632 nm |
表面平整度 | λ/8@632 nm |
通光孔径 | >95 % |
倒角 | <0.2×45° |
长度公差 | +0.5/-0mm |
厚度/直径公差 | ±0.05 mm |
最大尺寸 | dia (3~12.7)×(3~150) mm |
损坏阈值 | >750 MW/cm2@1064 nm 10 ns 10 Hz |
消光比 | >30 dB(取决于实际尺寸) |
精密研磨 | 400 grit |
晶体结构 | 立方 – la3d |
晶格常数 | 12.01 Å |
密度 | 4.56 g/cm3 |
熔点 | 1950 °C |
导热系数/(W·m-1·K-1 @ 25°C) | 14 |
比热/(J·g-1·K-1) | 0.59 |
断裂应力 | 1.3-2.6*103 kg/cm2 |
热膨胀率/(10-6·K-1 @ 25°C) | [100] 取向–8.2 |
[110] 取向–7.7 | |
[111] 取向–7.8 | |
硬度(莫氏) | 8.5 |
杨氏模量/ GPa | 317 |
剪切模量/ Gpa | 54.66 |
消光比 | 25 dB |
泊松比 | 0.25 |
激光跃迁 | 4F3/2 →> 4I11/2 |
光子能量 | 1.86×10-19 J |
激光跃迁波长,λl(nm) | 1064 |
泵浦跃迁波长,λp(nm) | 808 |
泵浦跃迁带宽,Δλp(nm) | <4 |
激光跃迁带宽,Δλl(nm) | ~0.6 |
泵过渡峰截面,σp(E-20 cm2) | 6.7 |
激光跃迁峰截面,σl(E-20 cm2) | 28 |
泵过渡饱和强度φp(kW / cm2) | 12 |
激光跃迁饱和强度φl(kW / cm2) | 2.6 |
激光跃迁饱和通量Γl,sat(J / cm2) | 0.6 |
最小泵浦强度Imin(kW / cm2) | ~0 |
上部激光管寿命,τ(毫秒) | 0.26 |
量子缺陷分数 | 0.24 |
分数热产生 | 0.37 |
折光率 | 1.8197 @1.064 µm |
荧光寿命 | 230 µs |
Nd:YAG晶体案例(一)用于1064 nm激光器
规格:Φ8×165 mm;
2面抛光;
波前畸变:λ/8@633nm;
AR/AR@1064 R<0.2
Nd:YAG晶体案例(二)用于1064 nm激光器
规格:直径 7 mm,长度 140 mm
方向111
浓度 0.8-1%
用于工作端的 AR 1064 nm
Nd:YAG晶体案例(三)用于1064 nm激光器
规格:dia.4×10 mm;
Nd 浓度:(脉冲激光器的标准)0.9-1.3 at. %;
镀膜:双面 AR/AR 1064nm
Nd:YAG + V:YAG键合晶体用于1319 nm激光器
Nd:YAG表面:
R<1%@808±5 nm & R>99.9%@1319±1 nm & R<10%@1064±1nm,AOI=0±5°
V:YAG表面:
R=85%±2%@1319±1 nm & R<10%@1064±1 nm, AOI=0±5°
Nd:YAG晶体案例(五)用于1064 nm激光器
规格:dia. 2*75 mm;
2面抛光;
AR/AR@1064 nm
Nd:YAG晶体案例(六)用于1064 nm激光器
规格: dia.8*165 mm;
Nd掺杂水平:0.8~1.1%;
Ø8 mm 表面 2 面抛光;
AR/AR@1064 R<0.2
Nd:YAG晶体案例(七)用于激光焊接机
规格:Ø7*145 mm;
镀膜:AR/AR@1064nm, R<0.2%
Nd:YAG晶体案例(八)
规格:Ø1*20 mm;
Nd掺杂水平:1.1%;
Orientation:<111>
Nd:YAG晶体案例(九)
规格:φ7×145 mm;
定向:111;
镀膜: AR/AR@1064nm
Nd:YAG晶体案例(十)— 定制
规格:Φ6.35×109 mm;
凹槽 =49.25*2=95.5 mm;
镀膜: AR/AR@1064nm, R<0.25
- 增益系数高
- 激光阈值低
- 优异的光学,机械和物理性能
- 高斜率效率
- 宽吸收带宽
材料加工
光通讯
雷达与测距
全息摄影
医疗应用
- 532nm激光
- 1064nm激光
- 双波长(1064nm 532nm)激光器
- 620-670nm OPO可调脉冲激光
- 1064nm激光
- 激光测距仪
- 激光美容仪
- 激光打标机
- 激光医学
[1] Siqi, Zhu, Zaijun, et al. A \\{LD\\} side-pumped deep ultraviolet laser at 266 nm by using a Nd:YAG/Cr4+:YAG/YAG composite crystal[J]. Optics & Laser Technology, 2014. |
[2] Panahibakhsh S , Jelvani S , Maleki M H , et al. Characterization of the optical properties of ArF laser irradiated Nd:YAG crystal[J]. Optik – International Journal for Light and Electron Optics, 2016. |
[3] Lin, Hong-Yi, Sun, et al. Comparative study between Nd:GYSGG and Nd:YAG lasers passively Q-switched by a Cr:YAG crystal[J]. Journal for Light and Electronoptic, 2018. |
[4] Kanchanavaleerat E , D Cochet-Muchy, Kokta M , et al. Crystal growth of high doped Nd:YAG[J]. Optical Materials, 2004, 26(4):337-341. |
[5] Zhang M , Guo H , Han J , et al. Distribution of Neodymium and properties of Nd:YAG crystal by horizontal directional solidification[J]. Journal of Crystal Growth, 2012, 340(1):130-134. |
[6] Panahibakhsh S , Jelvani S , Maleki M H , et al. Effect of XeCl laser irradiation on the defect structure of Nd:YAG crystals[J]. Optics & Lasers in Engineering, 2014, 60(sep.):12-17. |
[7] Ikesue A , Yan L A , Yoda T , et al. Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing[J]. Optical Materials, 2007, 29(10):1289-1294. |
[8] Fu Y , Ge L , Li J , et al. Fabrication, microstructure and laser performance of composite Nd:YAG transparent ceramics[J]. Optical Materials, 2016:S0925346716302415. |
[9] Ren Y , Zhang L , Romero C , et al. Femtosecond laser irradiation on Nd:YAG crystal: Surface ablation and high-spatial-frequency nanograting[J]. Applied Surface Science, 2018, 441(MAY31):372-380. |
[10] Li S L , Ye Y K , Wang M W . Femtosecond laser written channel optical waveguide in Nd:YAG crystal[J]. Optics & Laser Technology, 2014, 58(6):89–93. |
[11] Yadegari M , Asadian M , Saeedi H , et al. Formation of gaseous cavity defect during growth of Nd:YAG single crystals[J]. Journal of Crystal Growth, 2013, 367(mar.15):57-61. |
[12] Vatnik S M . Gain and laser operation of 1.1%Nd:YAG crystal fibers[J]. Optics Communications, 2001, 197(4-6):375-378. |
[13] Dong J , Deng P , Gan F , et al. Highly doped Nd:YAG crystal used for microchip lasers[J]. Optics Communications, 2001, 197(4-6):413-418. |
[14] Meng-yao, Wu, Peng-fei, et al. Investigation of multi-segmented Nd:YAG/NdYVO4 crystals and their laser performance end-pumped by a fiber coupled diode laser[J]. Optik, 2019, 179:367-372. |
[15] Yuan Y , Li B , Guo X . Laser diode pumped Nd:YAG crystals frequency summing 589nm yellow laser[J]. Optik – International Journal for Light and Electron Optics, 2016, 127(2):710-712. |
[16] Sokol M , Kalabukhov S , Kasiyan V , et al. Mechanical, thermal and optical properties of the SPS-processed polycrystalline Nd:YAG[J]. Optical Materials, 2014, 38(7):204-210. |
[17] Walsh, Brian M . Nonlinear mixing of Nd:YAG lasers; harmonic and sum frequency generation[J]. Optical Materials, 2016:S0925346716303548. |
[18] Torchia G A , C Méndez, Roso L , et al. Optical spectroscopy in channel waveguides made in Nd:YAG crystals by femtosecond laser writing[J]. Journal of Luminescence, 2008, 128(5-6):754-756. |
[19] Qiang A , Dong N , Feng C , et al. Photonic crystal structure in Nd:YAG laser crystals[J]. Optical Materials, 2012, 34(11):1811-1814. |
[20] Li S , Ma P , Zhu X , et al. Post-treatment of nanopowders-derived Nd:YAG transparent ceramics by hot isostatic pressing[J]. Ceramics International, 2017, 43(13):10013-10019. |
[21] Ma B , Zhang W , Shen B , et al. Preparation and characterization of highly transparent Nd:YAG/YAG composite ceramics[J]. Optical Materials, 2018, 79:63-71. |
[22] Wei S , Junji Z . Preparation and properties of Yb:YAG and Nd:YAG nanocrystals[J]. Rare Metal Materials and Engineering, 2017, 46(3):591-595. |
[23] Banerjee J , Muralidhar K . Role of internal radiation during Czochralski growth of YAG and Nd:YAG crystals[J]. International Journal of Thermal Sciences, 2006, 45(2):151-167. |
[24] Nurmohammadi T . Optik – International Journal for Light and Electron Optics. 2014. |
[25] Kosti? S , Lazarevi? Z ? , Radojevi? V , et al. Study of structural and optical properties of YAG and Nd:YAG single crystals[J]. Materials Research Bulletin, 2015, 63:80-87. |
[26] An Q , Jia Y , Liu H , et al. Ultrafast laser inscribed cladding waveguides in Nd:YAG crystal for mid-infrared wavelength[J]. Optics & Laser Technology, 2014, 56:382-386. |
[27] Ajates J G , Romero C , Castillo G R , et al. Y-junctions based on circular depressed-cladding waveguides fabricated with femtosecond pulses in Nd:YAG crystal: A route to integrate complex photonic circuits in crystals[J]. Optical Materials, 2017, 72:220. |
发表回复