参数
属性 | 数值 |
化学式 | ZnGeP2 |
晶体结构 | 四方晶系,`42m |
晶格参数 | a=b=5.467Å, c=12.736Å |
质量密度 | 4.16 g/cm3 |
莫氏硬度 | 5.5 |
熔点 | 大约1040°C |
导热系数 | 180 W/m/K |
热膨胀系数 | β‖,5×10-6/K; β⊥,7.8×10-6/K |
双折射 | 正单轴 |
属性 | 数值 |
透明范围 | 0.74 – 12 um |
吸收系数 | α<0.05cm-1 @2050-2100 nm |
折光指数 | |
@ 2.05微米 | no = 3.1478, ne = 3.1891 |
@ 2.79微米 | no = 3.1333, ne = 3.1744 |
@ 5.30微米 | no = 3.1136, ne = 3.1547 |
@ 10.6微米 | no = 3.0729, ne = 3.1143 |
属性 | 数值 |
SHG相位匹配范围 | 3177 ∼ 10357nm (Type I) |
NLO系数 | d36=75 ± 8 pm/V |
Type Ⅰ deeo=d36 sin2θcos2φ | |
Type Ⅱ doeo=deoo=d36 sinθsin2φ | |
损坏阈值 | |
在2.79 um | 30 GW/cm2 (150 ps) |
在10.6 um | 1 GW/cm2 (2 ns) |
λ[µm] | α [cm-1] | Note |
1.064 | 1.52 | |
1.06 | 最佳晶体 | |
1.9 | 0.8–0.95 | |
2 | 0.15 | o-波, 最佳晶体 |
0.16 | ||
2.05 | 0.35 | |
0.26 | o-波 | |
0.23 | ||
0.2 | o-波, 退火后 | |
<0.1 | 最佳晶体 | |
0.09 | 最佳晶体 | |
0.02–0.04 | 经过退火和辐射处理 | |
2.08 | 0.62 | o-波,平均值 |
1.2 | e-波, 平均值 | |
2.15 | 0.6 | |
0.09–0.25 | 典型的晶体o-波 | |
0.03 | 最佳晶体, o-波 | |
2.39 | 0.55 | |
2.5 | 0.11 | o-波,生长晶体 |
2.5–8 | <0.1 | |
2.5–8.3 | <0.2 | |
2.5–8.5 | <0.1 | |
2.73 | 0.03 | |
2.75 | 0.3 | |
2.79 | 0.06 | |
2.8 | 0.01 | 最佳晶体, o-波 |
2.8–8.3 | <0.1 | |
3–8 | 0.005–0.15 | |
<0.1 | ||
<0.01 | ||
3.15 | 0.17 | |
3.5–3.9 | 0.41 | o-波, SFG 方向 |
3.5 | 0.4 | |
3.8 | 0.1–0.18 | |
3.9–4.5 | 0.1 | |
4–8.5 | <0.05 | |
4.5–8 | 0.03 | 最佳样品 |
4.65 | 0.4 | |
0.1–0.2 | ||
0.01–0.05 | SHG 方向 | |
4.78 | <0.055 | |
0.16 | ||
5.3–6.1 | 0.32 | e-波, SFG 方向 |
5.5–6.3 | 0.1 | |
7.8 | 0.15 | |
8.24 | 0.02 | |
8.3 | 0.45 | |
8.3–9.5 | <0.3 | |
9 | 0.9 | |
9.2 | 0.51 | |
9.28 | 0.4 | |
9.3 | 0.8 | |
0.7 | SHG 方向 | |
0.4–0.5 | ||
0.48 | e-波 | |
9.5 | 0.39 | e-波 |
9.55 | 0.26 | SHG 方向 |
0.56 | ||
9.6 | 0.33 | |
9.7 | 0.33 | e-波 |
10 | 0.45 | |
10.3 | 0.42 | |
10.4 | 0.6 | |
10.6 | 0.9 | |
0.83 | e-波, SFG 方向 | |
0.65 | ||
10.7 | 0.88 | e-波 |
11.1 | 1.2 |
λ[µm] | no | ne | λ[µm] | no | ne |
0.64 | 3.5052 | 3.5802 | 3.4 | 3.1263 | 3.1647 |
0.66 | 3.4756 | 3.5467 | 3.6 | 3.1257 | 3.1632 |
0.68 | 3.4477 | 3.516 | 3.8 | 3.1237 | 3.1616 |
0.7 | 3.4233 | 3.4885 | 4 | 3.1223 | 3.1608 |
0.75 | 3.373 | 3.4324 | 4.2 | 3.1209 | 3.1595 |
0.8 | 0.8 | 3.3915 | 4.5 | 3.1186 | 3.1561 |
0.85 | 3.3063 | 3.3593 | 4.7 | 3.1174 | 3.1549 |
0.9 | 3.283 | 3.3336 | 5 | 3.1149 | 3.1533 |
0.95 | 3.2638 | 3.3124 | 5.5 | 3.1131 | 3.1518 |
1 | 3.2478 | 3.2954 | 6 | 3.1101 | 3.148 |
1.1 | 3.2232 | 3.2688 | 6.5 | 3.1057 | 3.1445 |
1.2 | 3.2054 | 3.2493 | 7 | 3.104 | 3.142 |
1.3 | 3.1924 | 3.2346 | 7.5 | 3.0994 | 3.1378 |
1.4 | 3.182 | 3.2244 | 8 | 3.0961 | 3.135 |
1.6 | 3.1666 | 3.2077 | 8.5 | 3.0919 | 3.1311 |
1.8 | 3.1562 | 3.1965 | 9 | 3.088 | 3.1272 |
2 | 3.149 | 3.1889 | 9.5 | 3.0836 | 3.1231 |
2.2 | 3.1433 | 3.1829 | 3.1829 | 3.0788 | 3.1183 |
2.4 | 3.1388 | 3.178 | 10.5 | 3.0738 | 3.1137 |
2.6 | 3.1357 | 3.1745 | 11 | 3.0689 | 3.1087 |
3 | 3.1304 | 3.1693 | 12 | 3.0552 | 3.0949 |
3.2 | 3.1284 | 3.1671 |
SHG, e+e⇒o | |
3.9278⇒1.9639 | 57.8±0.3 |
4.34⇒2.17 | 55.8±0.2 |
4.64⇒2.32 | 47.5 |
4.775⇒2.3875 | 49.2 |
5.2955⇒2.64775 | 46.8 |
9.2⇒4.6 | 63.8 |
9.3054⇒4.6527 | 61.3/63/64 |
9.5⇒4.75 | 62.1/66.8 |
9.5524⇒4.7762 | 65.3 |
9.6036⇒4.8018 | 64.9/65.8 |
10.2⇒5.1 | 72 |
10.3035⇒5.15175 | 74.3/74.5 |
10.5514⇒5.2757 | 79.2 |
10.5910⇒5.2955 | 80.1 |
SFG, e+e ⇒ o | |
10.668+4.34⇒3.085 | 54.3±0.2 |
10.5910+5.2955⇒3.53033 | 52.1 |
10.5910+3.53033⇒2.64775 | 48.4 |
9.74+4.2039⇒2.9365 | 49.6 |
5.2955+3.53033⇒2.1182 | 51.7 |
SFG, o+e ⇒ o | |
6.74+5.2036⇒2.9365 | 76 |
6.45+5.3908⇒2.9365 | 79.2 |
6.25+5.5389⇒2.9365 | 84 |
6.15+5.6199⇒2.9365 | 85.5 |
6.29+5.0173⇒2.791 | 76 |
6.19+5.0828⇒2.791 | 77.6 |
6.06+5.1739⇒2.791 | 80.5 |
6.015+5.207⇒2.791 | 84 |
5.95+5.2569⇒2.791 | 83.4 |
5.90+5.2965⇒2.791 | 87 |
10.5910+1.0642⇒0.96703 | 84 |
相互作用波长[μm] | Δθint [deg] |
SHG, e+e ⇒ o | |
3.8⇒1.9 | 1.33 |
4.34⇒2.17 | 1.05 |
5.3⇒2.65 | 0.69 |
7.8⇒3.9 | 0.5 |
9.3⇒4.65 | 0.74–0.80 |
0.83 | |
1.15 | |
9.55⇒4.775 | 0.89 |
9.6⇒4.8 | 0.8 |
10.2⇒5.1 | 1.35 |
10.3⇒5.15 | 1.2 |
SFG, e+e ⇒ o | |
10.668+4.34⇒3.085 | 1.23 |
SFG, o+e ⇒ o | |
10.6+1.064⇒0.967 | 0.55 |
相互作用波长[μm] | dθpm/dT [deg/K] |
SHG, e+e ⇒ o | |
9.2⇒4.6 | 0.014 |
10.3⇒5.15 | 0.072 |
10.6⇒5.3 | 0.107 |
SFG, o+e ⇒ o | |
10.6+1.0642⇒0.9671 | 0.007 |
λ[µm] | τp [ns] | Ithr[GW/cm2] | Note |
1.0642 | 30 | >0.003 | 12.5Hz |
10 | 0.003 | ||
1.3 | 0.00013 | >150 | 1kHz |
1.66 | 0.00013 | >100 | 1kHz |
2.05 | 30 | 0.013–0.016 | 5kHz |
10 | >0.074 | 10kHz | |
2.79 | 50 | >0.014 | 10Hz |
0.018 | 10Hz | ||
0.15 | 30 | ||
0.1 | 35 | 1Hz | |
2.8 | 70 | 0.056 | 1Hz,未镀膜样品 |
1Hz, 镀膜样品 | |||
0.08 | |||
2.94 | 0.11 | 30 | |
5.3–6.1 | CW | >0.00001 | |
0.00025 | |||
7.8 | 5000 | 10 | |
9.2–10.8 | CW | >0.00008 | |
9.28 | 2 | 1.25 | |
9.3 | 100 | 0.012 | 100Hz |
50 | >0.06 | 1Hz | |
9.3–10.6 | 125 | 0.025 | 20Hz |
0.03–0.04 | 2Hz | ||
9.55 | 220 | 0.078 | |
30 | 0.14 | SHG 方向 | |
10.2–10.8 | CW | >0.000001 | |
100,000–10,000,000 | 0.06 | 1500Hz | |
10.6 | CW | >0.00000001 | |
0.0002 |
频谱带宽的实验值 | ||
相互作用波长[μm] | Δν[cm-1] | |
SHG, e+e ⇒ o | ||
4.34⇒2.17 | 7.9 | |
10.2⇒5.1 | 4.9 | |
温度带宽的实验值 | ||
相互作用波长[μm] | θexp[deg] | ΔT[℃] |
SHG, e+e ⇒ o | ||
10.5910⇒5.2955 | 80.1 | 44 |
10.3035⇒5.15175 | 74.5 | 45 |
10.2⇒5.1 | 72 | 50 |
9.6036⇒4.8018 | 65.8 | 48 |
SFG, o+e ⇒ o | ||
10.5910+1.0642⇒0.96703 | 84 | 81.9 |
线性热膨胀系数αt | ||
ΔT [K] | αt×106[K-1], ||c | αt×106[K-1], ⊥c |
293–573 | 15.9 | 17.5 |
573–873 | 8.08 | 9.1 |
导热系数κ: | ||
T [K] | κ[W/mK], ||c | κ[W/mK], ⊥c |
293 | 36 | 35 |
双光子吸收系数β | ||
λ[μm] | τp[ns] | β×1011 |
1.3 | 0.00013 | 25 |
在室温下测得的线性电光系数(远高于ZnGeP2晶体的声共振,即“钳位”晶体的共振): | ||
λ[µm] | r41S[pm/V] | r63S[pm/V] |
3.3913 | 1.6 | -0.8 |
ZGP传输光谱 | ZGP的SHG调谐曲线(eeo型) |
ZGP的OPO调谐曲线在2800nm的泵浦灯下。 | ZGP的OPO调谐曲线在2090nm的泵浦灯下。 |
特点
应用
参考文献
新闻
特点
- 非线性系数大
- 透射区域为74 um至12um
- 相对损坏阈值高
- 高导热率
- 透明区域广泛
- 宽光谱范围内的相位匹配
应用
- 产生相干辐射,范围从70.0μm到1000μm-太赫兹范围
- 在ZGP透明区域工作的CO2和CO激光辐射或其他激光的组合频率
- 镭射激光
- CO2激光的二次,三次和三次谐波产生
- OPO(光学参量生成),在2.05-2.94μm的波长处进行泵浦,并可能有效生成3-10μm的范围
参考文献
[1] Huang C , Wu H , Xiao R , et al. High-pressure-assisted synthesis of high-volume ZnGeP 2 polycrystalline[J]. Journal of Crystal Growth, 2018:S0022024818300411. |
[2] Liu M , Zhao B , Chen B , et al. Research of thermodynamic properties of mid-infrared single crystal ZnGeP 2[J]. Materials Science in Semiconductor Processing, 2018:S1369800117325908. |
[3] Vasilyeva I G , Nikolaev R E , Verozubova G A . Nonstoichiometry of ZnGeP2 crystals probed by static tensimetric method[J]. Journal of Solid State Chemistry, 2010, 183(9):2242-2247. |
[4] Yue X , Xu M , Du W , et al. Surface finishing of ZnGeP2 single crystal by diamond tool turning method[J]. Optical Materials, 2017:S0925346716307704. |
[5] D Yang, Zhao B , Chen B , et al. Impurity phases analysis of ZnGeP2 single crystal grown by Bridgman method[J]. Journal of Alloys & Compounds, 2017, 709:125-128. |
[6] Verozubova G A , Gribenyukov A I , Korotkova V V , et al. ZnGeP2 synthesis and growth from melt[J]. Materials Science and Engineering B, 1997, 48(3):191-197. |
[7] Mengyan P W , Baker B B , Lichti R L , et al. Hyperfine spectroscopy and characterization of muonium in ZnGeP 2[J]. Physica B Condensed Matter, 2009, 404(23-24):5121-5124. |
[8] Zhang S R , Zhu S F , Xie L H , et al. Theoretical study of the structural, elastic and thermodynamic properties of chalcopyrite ZnGeP2[J]. Materials Science in Semiconductor Processing, 2015, 38:41-49. |
[9] Lei Z , Okunev A O , Zhu C , et al. Photoelasticy method for study of structural imperfection of ZnGeP2 crystals[J]. Journal of Crystal Growth, 2016, 450(Complete):34-38. |
[10] Tripathy S K , Kumar V . Electronic, elastic and optical properties of ZnGeP2 semiconductor under hydrostatic pressures[J]. Materials Science & Engineering B, 2014, 182(1):52-58. |
[11] Yang D H , Zhao B J , Chen B J , et al. Growth of ZnGeP 2 single crystals by modified vertical Bridgman method for nonlinear optical devices[J]. Materials Science in Semiconductor Processing, 2017, 67:147-151. |
[12] Vasilyeva I G , Demidova M G . Chemical analysis of ZnGeP2 as a new line of research of heterogeneity in bulk crystals[J]. Talanta, 2012, 101(none):187-191. |
[13] Chaudhary, K A, K. S , et al. Generation of terahertz from ZnGeP2 crystal and its application to record the time-resolved photoacoustic spectra of nitromethane. |
[14] Yang C H , Wang M , Xia S X , et al. Synthesis and Growth of ZnGeP_2 Crystals. Journal of Synthetic Crystals. |
[15] Wang Z , Mao M , Wu H , et al. Study on annealing of infrared nonlinear optical crystal ZnGeP2[J]. Journal of Crystal Growth, 2012, 359(none):11–14. |
[16] Verozubova G A , Okunev A O , Gribenyukov A I , et al. Growth and defect structure of ZnGeP2 crystals[J]. Journal of Crystal Growth, 2010, 312(8):1122-1126. |
[17] Verozubova G A , Gribenyukov A I , Korotkova V V , et al. Synthesis and growth of ZnGeP 2 crystals for nonlinear optical applications[J]. Journal of Crystal Growth, 2000, 213(s 3–4):334-339. |
[18] Fan Q , Zhu S , Zhao B , et al. Influence of annealing on optical and electrical properties of ZnGeP2 single crystals – ScienceDirect[J]. Journal of Crystal Growth, 2011, 318(1):725-728. |
[19] Hofmann D M , Romanov N G , Gehlhoff W , et al. Optically detected magnetic resonance experiments on native defects in ZnGeP 2[J]. Physica B Condensed Matter, 2003, 340-342(none):978-981. |
[20] Verozubova G A , Okunev A O , Gribenyukov A I . Bulk growth of ZnGeP2 crystals and their study by X-ray topography[J]. Journal of Crystal Growth, 2014, 401(sep.1):782-786. |
[21] Wu X X , Zheng W C . Research on the EPR parameters and local structure of Cr4+ ion at the tetragonal Ge4+ site in ZnGeP2 crystal[J]. Physica B Physics of Condensed Matter, 2015, 473:72-74. |
新闻
发表回复