YCOB晶体是应用最广泛的非线性光学晶体之一。其非线性光学系数相当于BBO晶体和LBO晶体的非线性光学系数。二阶和三阶有效倍频系数分别达到KDP的2.8和1.4倍,具有孔径大、飞秒区损伤强度高、允许角和允许温度范围宽、色散角小、短等优点生长期采用Cz法,同时具有稳定的理化性能(不潮解)和良好的加工性能。因此,蓝绿光和紫外波段光学倍频晶体具有良好的应用前景。
YCOB(YCa4O(BO3)3,氧硼酸钇钙)—非线性晶体,被认为具有紫外波段光学倍频器的良好前景
与YCOB相关的最新技术成就之一是通过一个硅片的腔体SHG在1.2厘米长的晶体(θ= 64.5°,φ= 35.5°)中产生2.35W CW绿色输出(λ= 532 nm)。二极管阵列泵浦Nd:YVO4激光器(P = 5.6W)。另一个类似的应用是NdYVO4激光辐射的THG。使用KTP晶体进行倍频,使用1.1cm长的YCOB晶体(θ= 106°,φ= 77.2°),作者设法在355 nm处获得124mW的准CW光(脉冲重复频率20 kHz)。
参数
晶体结构 | 单斜,点群m |
晶格参数 | a=8.0770 Å, b=16.0194 Å , c=3.5308 Å , β=101.167º, Z=2 |
熔点 | 大约1510ºC |
莫氏硬度 | 6~6.5 |
密度 | 3.31 g/cm3 |
导热系数 | 2.6 W/m/K (||X), 2.33 W/m/K (||Y), 3.1 W/m/K (||Z) |
方向公差 | < 0.5° |
厚度/直径公差 | ±0.01 mm |
表面平整度 | <λ/8 @632nm |
波前失真 | <λ/4 @632nm |
表面质量 | 5-Oct |
平行 | 30〞 |
垂直 | 15ˊ |
通光孔径 | >90% |
倒角 | <0.2×45° |
相互作用波长[μm] | Φpm [deg] | θpm [deg] |
XY plane,θ =90° | ||
SHG,o+o ⇒ e | ||
1.0642⇒0.5321 | 35 | |
0.7379⇒0.36895 | 77.3 | |
SHG, type I, along Y | ||
0.724⇒0.362 | 90 | |
SFG, o+o ⇒ e | ||
1.0642+0.5321⇒0.3547 | 73.4/74.8/75.2/75.3 | |
SHG, type II, along Y | ||
1.03⇒0.515 | 90 | |
SFG, e+o ⇒ e | ||
1.9079+1.0642⇒0.6831 | 81.2 | |
YZ plane, Φ=90◦ | ||
SHG, e+e ⇒ o | ||
0.7379⇒0.36895 | 66.9 | |
SFG, e+e ⇒ o | ||
1.0642+0.5321⇒0.3547 | 58.7/59.7/59.8/59.9 | |
SHG, e+o ⇒ o | ||
1.0642⇒0.5321 | 58.7/51.1/62.7 | |
SFG, e+o ⇒ o | ||
1.9079+1.0642⇒0.6831 | 73.5 | |
XZ plane, Φ=0◦, θ<VZ | ||
SHG, type I, along Z | ||
0.83⇒0.415 | 0 | |
0.8325⇒0.41625 | 0 | |
SHG, o+o ⇒ e | ||
0.9⇒0.45 | 18.7 | |
0.954⇒0.477 | 24.1 | |
1.0642⇒0.5321 | 30.8/31.7 | |
1.3382⇒0.6691 | 38.2/38.3 | |
SFG, o+o ⇒ e | ||
1.0642+0.7379⇒0.4358 | 17.1 | |
1.569+0.5321⇒0.3973 | 18.6 | |
1.3188+0.6594⇒0.4396 | 23 | |
1.9079+0.5321⇒0.4161 | 26.6 |
相互作用波长[μm] | Φpm [deg] | θpm [deg] | Δϕint[deg] | Δθint[deg] |
XY plane, θ =90◦ | ||||
SHG, o+o ⇒ e | ||||
1.0642⇒0.5321 | 35 | 0.09 | ||
SHG, e+o ⇒ e | ||||
1.0642⇒0.5321 | 73.4 | 0.32 | ||
SFG, o+o ⇒ e | ||||
1.0642+0.5321⇒0.3547 | 73.2 | 0.11 | ||
YZ plane, φ =90◦ | ||||
SHG, e+o ⇒ o | ||||
1.0642⇒0.5321 | 58.7 | 0.74 | ||
SFG, e+e ⇒ o | ||||
1.0642+0.5321⇒0.3547 | 58.7 | 0.19 | ||
XZ plane, Φ=0◦,θ<VZ | ||||
SHG, o+o ⇒ e | ||||
1.0642⇒0.5321 | 31.7 | 0.08 |
注意:对于双轴晶体,存在两个角度接受:一个在θ中,另一个在中。 作者只介绍了最小的一个。
相互作用波长[μm] | ΔT[℃] | Note |
XY plane, θ =90◦ | ||
SHG, o+e ⇒ e | ||
1.0642⇒0.5321 | 32.7 | |
32.8 | Φ=75.3° | |
SFG, o+o ⇒e | ||
1 .0642+0.5321⇒0.3547 | 8.6 | Φ=73.7° |
9.7/10 | ||
YZ plane, φ =90◦ | ||
SHG, o+e ⇒ o | ||
1.0642⇒0.5321 | 31.5 | θ =62.7° |
31.7/29.2 | ||
SFG, e+e ⇒ o | ||
1.0642+0.5321⇒0.3547 | 6.2/8.5 | |
XZ plane, φ =0◦, θ>180◦−VZ | ||
SHG, type I, 沿Z | ||
0.8325⇒0.41625 | 21.6/31.5 | |
SHG, o+o ⇒ e | ||
0.9⇒0.45 | 24.6 | θ =18.7° |
45.3 | θ =161.3° | |
1 .0642⇒0.5321 | 75 | θ =30.8° |
1 .3382⇒0.669 | 61 | θ =141.7° |
SFG, o+o ⇒ e | ||
1 .0642+0.7379⇒0.4358 | 36.5 | θ =162.9° |
1 .569+0.5321⇒0.3973 | 16.9 | θ =18.6° |
33.8 | θ =161.4° |
相位匹配方向 | deff [pm/V] |
θ =90˚,Φ=35.3˚ (XY plane) | 0.39 |
θ =90˚,Φ=35˚ (XY plane) | 0.42 |
θ =31.7˚,Φ=0˚ (XZ plane) | 0.78 |
1.03 | |
θ =148.3˚,Φ=0˚ (XZ plane) | 1.36 |
1.44 | |
θ =65˚,Φ=36.5˚ | 1.14 |
θ =65.9˚,Φ=36.5˚ | 0.91 |
θ =66.3˚,Φ=143.5˚ | 1.45 |
θ =67˚,Φ=143.5˚ | 1.73 |
θ =66˚,Φ=145˚ | 1.8 |
在YCOB晶体中,deff的特性包括反射镜和反演对称性。 这意味着可以通过选择两个独立的象限来完全描述deff的空间分布,例如(0°<θ<90°,0°<Φ<90°)和(0°<θ<90°,90 °<Φ<180°)。此后,这两个象限的每个(θ,Φ)方向的deff值等于(180°-θ,180°-Φ)方向的deff值,反之亦然。 例如,方向(θ= 33°,ϕ = 9°)和(θ= 147°,Φ= 171°)具有相等的deff值。
相位匹配方向 | THG转化效率[%] |
θ =65˚, φ =82.8˚ | 2 |
θ =90˚, φ =73.8˚ (XY plane) | 7 |
θ =111˚, φ =79.6˚ | 20 |
θ =106˚, φ =77.2˚ | 26 |
λ[μm] | τp[ns] | Ithr[GW/cm2] | 注意 |
0.532 | 6 | 1 | |
1.064 | 10 | 85 | 1 pulse |
6 | >1 | 10Hz | |
1.1 | 18.4 | along Y axis, E||Z |
线性热膨胀系数的平均值 | |||
T [K] | αt×106[K-1],||c | αt×106[K-1],||c | αt×106[K-1],||c |
293–473 | 8.39 | 5.18 | 9.17 |
293–1173 | 9.9 | 8.2 | 12.8 |
在P = 0.101325MPa时的比热cp | |||
T [K] | cp[J/kgK] | ||
373 | 729.7 | ||
T = 293K时的导热系数 | |||
κ[W/mK],||X | κ[W/mK],||Y | κ[W/mK],||Z | |
2.6 | 2.33 | 3.01 | |
T = 373K时的导热系数 | |||
κ[W/mK],||a | κ[W/mK],||b | κ[W/mK],||c | |
1.83 | 1.72 | 2.17 | |
线性吸收系数α | |||
λ[µm] | α[cm-1] | ||
0.21 | 1 | ||
YCOB晶体中某些特定相位匹配方向(SHG,I型,0.946μm⇒0.473μm)的内部角带宽的实验值 | |||
相位匹配方向 | Δ[deg] | ||
θ =67.9◦, Φ=136.8◦ | 0.06 |
蓝线是SHG后的光谱强度。 红线是Wizzler测得的相位 | 蓝线是SHG之后的脉冲FTL形状。 红线是Wizzler测量的时间形状。 |
通过基于BBO晶体的第一阶段(黑色实线)和基于YCOB晶体的第二阶段(红色实线)获得的OPA光谱。 | YCOB晶片的X射线摇摆曲线 |
YCOB晶体的透射光谱 |
YCOB晶体案例(一)用于OPA
规格:10×10×4 mm,10×10×5 mm,10×10×6 mm;
镀膜S1/S2:AR/AR@1030nm
- 电阻率高
- 温度接受度高
- 激光诱导损伤阈值高
- 各向异性较小
- 热膨胀系数小
- 较少的参数发光
- SHG(二次谐波),THG(三次谐波)
- OPO(光参量振荡器)
- OPA(光学参量放大)
- OPCPA(光参量chi脉冲放大)
- 压电加速度传感器
- 压力传感器
- 气体传感器
[1] Zhong D , Bing T , Kong W , et al. Effect of disordered structure and crystal defects on heat transfer behavior in Er:Yb: YCa4O(BO3)3 crystal[J]. Journal of Physics and Chemistry of Solids, 2018, 124:121-129. |
[2] Tu X , Zheng Y , Xiong K , et al. Crystal growth and characterization of 4 in. YCa4O(BO3)(3) crystal[J]. Journal of Crystal Growth, 2014, 401(sep.1):160-163. |
[3] Segonds P , Boulanger B , B Ménaert, et al. Optical characterizations of YCa4O(BO3)3 and NdlYCa4O(BO3)3 crystals[J]. Optical Materials, 2007, 29(8):975-982. |
[4] Fujimoto Y , Yanagida T , Yokota Y , et al. Scintillation and optical properties of Pb-doped YCa 4O(BO 3) 3 crystals[J]. Nuclear Inst & Methods in Physics Research A, 2011, 652(1):238-241. |
[5] Goldner P , Guillot-No?L O , Higel P . Optical bistability in Yb3+:YCa4O(BO3)3 crystal[J]. Optical Materials, 2004, 26(3):281-286. |
[6] Hammons D A , Eichenholz J M , Ye Q , et al. Laser action in Yb3+: YCOB (Yb3+:YCa4O(BO3)3)[J]. Optics Communications, 1998, 156(4):327-330. |
[7] Kalidasan M , Kumar R A , Asokan K , et al. Effect of 120 MeV Au9+ ion irradiation on structural, optical and dielectric properties of YCa4O(BO3)3 nonlinear optical crystal[J]. Nuclear Inst & Methods in Physics Research B, 2012, 280(Jun.1):134-139. |
[8] A H Z , A H W , A Y W , et al. Properties of single crystal piezoelectric Ca 3 TaGa 3 Si 2 O 14 and YCa 4 O(BO 3 ) 3 resonators at high-temperature and vacuum conditions[J]. Sensors and Actuators A: Physical, 2014, 216(3):167-175. |
[9] Ye Q , Chai B . Crystal growth of YCa4O(BO3)3 and its orientation[J]. Journal of Crystal Growth, 1999, 197(s 1–2):228–235. |
[10] J. T , Ingle, and, et al. Combustion synthesis and optical properties of Oxy-borate phosphors YCa4O(BO3)3:RE3+ (RE=Eu3+, Tb3+) under UV, \\{VUV\\} excitation[J]. Journal of Alloys and Compounds, 2014, 585(1):633-636. |
[11] Shah L , Ye Q , Eichenholz J M , et al. Laser tunability in Yb 3+:YCa 4O(BO 3) 3 {Yb:YCOB}[J]. Optics Communications, 1999, 167(1-6):149-153. |
[12] Sano H , Matsumoto T , Matsumoto Y , et al. A combinatorial approach to the discovery and optimization of YCa 4O(BO 3) 3-based luminescent materials[J]. Applied Surface Science, 2006, 252(7):2493-2496. |
[13] Krishnakumar V , Nagalakshmi R . Polarised infrared and Raman studies of YCa4O(BO3)3 a non-linear optical single crystal[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2004, 60(12):2733-2739. |
[14] Jiang H , J Wang, Zhang H , et al. Spectral and luminescent properties of Yb3+ ions in YCa4O(BO3)3 crystal[J]. CHEMICAL PHYSICS LETTERS, 2002. |
[15] Jang W K , Ye Q , Eichenholz J , et al. Second harmonic generation in Yb doped YCa4O(BO3)3[J]. Optics Communications, 1998, 155(4-6):332-334. |
[16] Wang K M , Hui H , Chen F , et al. Refractive index profiles in YCa 4O(BO 3) 3 and Nd:YCa 4O(BO 3) 3 waveguides created by MeV He ions[J]. Nuclear Instruments & Methods in Physics Research, 2002, 191(1):789-793. |
[17] Investigation on intracavity second-harmonic generation at 1.06 μm in YCa4O(BO3)3 by using an end-pumped Nd:YVO4 laser[J]. Optics Communications, 2000. |
[18] Du C , Wang Z , Xu G , et al. Diode-end-pumped solid-state ultraviolet laser based on intracavity third-harmonic generation of 1.06mum in YCa4O(BO3)3 crystal[C]// Iumrs International Conference on Electronic Materials Iumrs-icem. 2002. |
YCOB非线性晶体的生长 — 2020/12/21 – 南京光宝光电科技有公司
发表回复