LBO是紫外波段优良的非线性晶体之一。它已成功地应用于YLF,YAG,YAP激光器的二次谐波和三次谐波的产生。LBO晶体具有宽的透射带、良好的紫外透过率、微潮解、良好的物理化学性质、中等的非线性光学系数、良好的光学均匀性、高的损伤阈值、大的允许角和小的走离角。广泛应用于高平均功率的二次谐波、和频、差频、三次谐波、四次谐波和参数振荡领域。
LBO晶体–非临界相位匹配激光倍频的最佳非线性晶体
LBO的最大优点是可以利用温度调谐来实现非临界相位匹配(NCPM)。当倍频过程满足非临界相位匹配关系时,倍频基频光与倍频二次谐波的走离角为0。此时,LBO晶体的有效长度理论上可以达到无穷大,这可以补偿其小的非线性系数。由于其损伤阈值很大,这意味着可以实现大功率基波抽运。因此,采用LBO晶体的非临界相位匹配进行脉冲激光的腔外倍频,将大大提高基频光的转换效率。频率光的光束质量和稳定性将大大提高。
参数
属性 | 数值 |
化学式 | LiB3O5 |
晶体结构 | 斜方,空间群Pna21,点群mm2 |
晶格参数 | a=8.4473Å ,b=7.3788Å, c=5.1395Å, Z=2 |
质量密度 | 2.47 g/cm3 |
莫氏硬度 | 6 |
熔点 | About 834°C |
导热系数 | 3.5W/m/K |
双折射 | 负双轴晶体:λ=0.5321μm时2Vz =109.2˚ |
晶体尺寸/ mm | 长度/mm | 应用 | 方向Theta / Phi deg | 增透膜S1 / S2,nm / nm |
5 x 5 | 15 | THG@1064nm, Type II (e-oe) | 42.2/90 | 1064 + 532 / 355 |
15 | SHG@1064nm, Type I (e-oo) | 90/11.6 | 1064 + 532 / 1064 + 532 | |
6 x 6 | 0.9 | SHG@1030nm | 90/13.8 | 515 + 1030 / 515 + 1030 |
1.9 | SHG@1030nm | 90/13.8 | 515 + 1030 / 515 + 1030 | |
2.8 | SHG@1030nm | 90/13.8 | 515 + 1030 / 515 + 1030 | |
3.7 | SHG@1030nm | 90/13.8 | 515 + 1030 / 515 + 1030 | |
10 x 10 | 0.9 | SHG@1030nm | 90/13.8 | 515 + 1030 / 515 + 1030 |
1.9 | SHG@1030nm | 90/13.8 | 515 + 1030 / 515 + 1030 | |
2.8 | SHG@1030nm | 90/13.8 | 515 + 1030 / 515 + 1030 | |
3.7 | SHG@1030nm | 90/13.8 | 515 + 1030 / 515 + 1030 | |
3 x 3 | 10 | THG@1064nm, Type II (e-oe) | 42.2/90 | 1064 + 532 / 355 |
15 | SHG@1064nm, NCPM I Type | 90/0 | 1064 + 532 / 1064 + 532 | |
15 | THG@1064nm, Type II (e-oe) | 42.2/90 | 1064 + 532 / 355 | |
15 | SHG@1064nm, Type I (e-oo) | 90/11.6 | 1064 + 532 / 1064 + 532 | |
20 | SHG@1064nm, NCPM I Type | 90/0 | 1064 + 532 / 1064 + 532 |
属性 | 数值 |
方向公差 | < 0.5° |
厚度/直径公差 | ±0.05 mm |
表面平整度 | <λ/8@632 nm |
波前失真 | <λ/4@632 nm |
表面质量 | 5-Oct |
平行 | 30〞 |
垂直 | 15ˊ |
通光孔径 | >90% |
倒角 | <0.2×45° |
属性 | 数值 |
透明范围 | 169 – 2600 nm |
吸收系数: | <0.1%/cm at 1064nm;<0.3%/cm at 532nm |
折光指数 | |
在 1.0642 mm | nx = 1.5656, ny = 1.5905, nz=1.6055 |
在 0.5321 mm | nx = 1.5785, ny = 1.6065, nz=1.6212 |
在 0.2660 mm | nx = 1.5973, ny = 1.6286, nz=1.6444 |
Sellmeier方程(λ in μm) | nx2=2.454140+0.011249/(λ2-0.011350)-0.014591λ2-6.60×10-5λ4 |
ny2=2.539070+0.012711/(λ2-0.012523)-0.018540λ2+2.0×10-4λ4 | |
nz2=2.586179+0.013099/(λ2-0.011893)-0.017968λ2-2.26×10-4λ4 |
属性 | 数值 |
SHG相位匹配范围 | 551 ~ 2600nm (Type I);790-2150nm (Type II) |
NLO系数 | deff(I)=d32cosΦ(XY平面中的I型) |
deff(I)=d31cos2θ+d32sin2θ(XZ平面中的I型) | |
deff(II)=d31cosθ(YZ平面中的II型) | |
deff(II)=d31cos2θ+d32sin2θ(XZ平面中的II型) | |
NLO敏感性未消失 | d31=1.05 ± 0.09 pm/V |
d32=-0.98 ± 0.09 pm/V | |
d33= 0.05 ± 0.006 pm/V | |
热光学系数(°C,λinμm) | dnx/dT=-9.3X10-6 |
dny/dT=-13.6X10-6 | |
dnz/dT=(-6.3-2.1λ)X10-6 | |
角度接受 | 6.54mrad-cm(Φ,I型,1064 SHG)15.27mrad-cm(q,II型,1064 SHG) |
T [K] | αt×106[ K-1],||X | αt×106[K-1 ],||Y | αt×106[ K-1],||Z |
273 | 107.1 | -95.4 | 33.7 |
323 | 108.2 | -88 | 33.6 |
373 | 108.3 | -80.9 | 33.2 |
423 | 107.3 | -74 | 32.6 |
473 | 105.3 | -67.3 | 31.7 |
523 | 102.3 | -60.7 | 30.5 |
573 | 98.2 | -54.4 | 29.1 |
673 | 87 | -42.3 | 25.5 |
723 | 79.8 | -36.5 | 23.3 |
773 | 71.6 | -30.9 | 20.9 |
873 | 52.1 | -20.3 | 15.3 |
923 | 40.8 | -15.3 | 12.1 |
973 | 28.5 | -10.6 | 8.7 |
1023 | 15.1 | -5.9 | 5 |
1073 | 0.8 | 1.5 | 1.1 |
λ[µm] | nX | nY | nZ |
0.2537 | 1.6335 | 1.6582 | 1.6792 |
0.2894 | 1.6209 | 1.6467 | 1.6681 |
0.2968 | 1.6182 | 1.645 | 1.6674 |
0.3125 | 1.6097 | 1.6415 | 1.6588 |
0.3341 | 1.6043 | 1.6346 | 1.6509 |
0.365 | 1.59523 | 1.62518 | 1.64025 |
0.4 | 1.58995 | 1.61918 | |
0.4047 | 1.5907 | 1.6216 | 1.6353 |
0.4358 | 1.5859 | 1.6148 | 1.6297 |
0.45 | 1.58449 | 1.61301 | 1.62793 |
0.4861 | 1.5817 | 1.6099 | 1.6248 |
0.5 | 1.58059 | 1.60862 | 1.62348 |
0.525 | 1.57906 | 1.60686 | |
0.5321 | 1.57868 | 1.60642 | 1.62122 |
0.5461 | 1.578 | 1.6057 | 1.6206 |
0.55 | 1.57772 | 1.60535 | 1.62014 |
0.578 | 1.5765 | 1.6039 | 1.6187 |
0.5893 | 1.576 | 1.6035 | 1.6183 |
0.6 | 1.57541 | 1.60276 | 1.61753 |
0.6328 | 1.5742 | 1.6014 | 1.6163 |
0.6563 | 1.5734 | 1.6006 | 1.6154 |
0.7 | 1.59893 | 1.61363 | |
0.8 | 1.56959 | 1.59615 | 1.61078 |
0.9 | 1.56764 | 1.59386 | 1.60843 |
1 | 1.56586 | 1.59187 | 1.60637 |
1.0642 | 1.56487 | 1.59072 | 1.60515 |
1.1 | 1.56432 | 1.59005 | 1.60449 |
相互作用波长[μm] | Φexp [deg] | θexp [deg] |
XY平面θ= 90° | ||
SHG, o+o ⇒ e | ||
1.908⇒0.954 | 23.8 | |
1.5⇒0.75 | 7 | |
1.0796⇒0.5398 | 10.6/10.7 | |
1.0642⇒0.5321 | 11.3/11.4/11.6/11.8 | |
0.946⇒0.473 | 19.4/19.5 | |
0.930⇒0.465 | 21.3 | |
0.896⇒0.448 | 23.25 | |
0.88⇒0.44 | 24.53 | |
0.850⇒0.425 | 27 | |
0.84⇒0.42 | 27.92 | |
0.836⇒0.418 | 28.3 | |
0.80⇒0.40 | 31.7 | |
0.794⇒0.397 | 32.3 | |
0.786⇒0.393 | 33 | |
0.78⇒0.39 | 33.7 | |
0.7735⇒0.38675 | 34.4 | |
0.75⇒0.375 | 37.13/37 | |
0.746⇒0.373 | 37.5 | |
0.7094⇒0.3547 | 41.8/41.9/42/43.5 | |
0.63⇒0.315 | 55.6 | |
0.555⇒0.2775 | 86 | |
0.554⇒0.277 | 90 | |
SFG, o+o ⇒ e | ||
1.3414+0.6707⇒0.44713 | 20 | |
1.0642+0.5321⇒0.35473 | 37/37.1/37.2 | |
1.053+0.5265⇒0.351 | 38.2 | |
1.0642+0.35473⇒0.26605 | 60.7/61 | |
0.86+0.43⇒0.2867 | 61 | |
1.3188+0.26605⇒0.22139 | 70.2 | |
0.21284+2.35524⇒0.1952 | 50.3 | |
0.21284+1.90007⇒0.1914 | 63.8 | |
0.21284+1.58910⇒0.18774 | 88 | |
YZ 平面, Φ=90◦ | ||
SHG, o+e ⇒ o | ||
1.908⇒0.954 | 46.2 | |
1.5⇒0.75 | 14.7 | |
1.0796⇒0.5398 | 19.2 | |
1.0642⇒0.5321 | 19.9/20.5/20.6/21.0 | |
SFG, o+e ⇒ o | ||
1.0641+0.53205⇒0.3547 | 42/42.7 | |
1.0642+0.5321⇒0.35473 | 42.2/42.5/43.2 | |
XZ 平面, Φ=0◦, θ<VZ | ||
SHG, e+o ⇒ e | ||
1.3414⇒0.6707 | 3.6/4.2/5.0 | |
1.3188⇒0.6594 | 5.2 | |
1.3⇒0.65 | 5.4 | |
XZ 平面, Φ=0◦, θ>VZ | ||
SHG, e+e ⇒ o | ||
1.3414⇒0.6707 | 86.1/86.3/86.6 | |
1.3188⇒0.6594 | 86 | |
1.3⇒0.65 | 86.1 | |
1.24⇒0.62 | 86 |
相互作用波长[μm] | T[℃] |
沿X轴 SHG, typeⅠ | |
1.547⇒0.7735 | 117 |
1.46⇒0.73 | 50 |
1.252⇒0.626 | 3.5 |
1.25⇒0.625 | -2.9 |
1.215⇒0.6075 | 21 |
1.211⇒0.6055 | 20 |
1.206⇒0.603 | 24 |
1.2⇒0.6 | 24.3 |
1.15⇒0.575 | 61.1 |
1.135⇒0.5675 | 77.4 |
1.11⇒0.555 | 108.2 |
1.0796⇒0.5398 | 112 |
1.0642⇒0.5321 | 148/148.5/149/149.5/151 |
1.047⇒0.5235 | 166.5/167/172/175/176.5/180 |
1.025⇒0.5125 | 190.3 |
SFG, typeⅠ | |
1.908+1.0642⇒0.6832 | 81 |
1.444+1.08⇒0.6179 | 23 |
1.135+1.0642⇒0.5491 | 112 |
1.547+0.7735⇒0.5157 | 141 |
DFG, typeⅠ | |
0.532-0.8⇒1.588 | 135 |
沿Z轴 SHG, type II | |
1.342⇒0.671 | 35 |
1.3⇒0.65 | 46 |
相互作用波长[μm] | T[℃] | Δφint [deg] | Δθint [deg] | ΔT[℃] |
沿X轴 | ||||
SHG, type I | ||||
1.46⇒0.73 | 50 | 6 | ||
1.252⇒0.626 | 3.5 | 9 | ||
1.206⇒0.603 | 24 | 13 | ||
1.135⇒0.5675 | 77.4 | 4.7 | ||
1.0642⇒0.5321 | 148 | 3.54 | 2.57 | 3.9 |
148.5 | 2.7 | |||
149 | 2.3 | 1.9 | 4 | |
149.5 | 4.1 | |||
151 | 2.1 | 2.1 | 2.9 | |
1.047⇒0.5235 | 175 | 3.5 | ||
SFG, type I | ||||
1.908+1.0642⇒0.6832 | 81 | 7.4 | ||
1.444+1.08⇒0.6179 | 23 | 4.2 | 3 | |
1.135+1.0642⇒0.5491 | 112 | 5 | ||
DFG, type I | ||||
0.532-0.8⇒1.588 | 135 | 3.8 |
相互作用波长[μm] | Φpm[deg] | θpm[deg] | Δφint[deg] | Δθint[deg] | ΔT[℃] | Δν[cm-1] |
XY平面,θ= 90(T = 293K) | ||||||
SHG, o+o ⇒ e | ||||||
1.0796⇒0.5398 | 10.7 | 0.31 | ||||
1.0642⇒0.5321 | 10.8 | 0.27 | 2.63 | |||
11.4 | 0.24 | 1.79 | ||||
11.6 | 5.8 | |||||
0.34 | 2.64 | 6.7 | 8.8 | |||
0.886⇒0.443 | 24.1 | 7.8 | 15.9 | |||
0.870⇒0.435 | 25.4 | 0.12 | 141 | |||
0.78⇒0.39 | 33.7 | 0.08 | 194 | |||
0.7605⇒0.38025 | 35.9 | 15.3 | 10.5 | |||
0.715⇒0.3575 | 41 | 0.06 | ||||
SFG, o+o ⇒ e | ||||||
1.0642+0.3547⇒0.2661 | 60.7 | 3.8 | ||||
YZ平面,φ= 90(T = 293K) | ||||||
SHG, o+e ⇒ o | ||||||
1.0642⇒0.5321 | 20.6 | 3.2 | 0.77 | |||
3 | 0.81 | 11.5 | ||||
SFG, o+e ⇒ o | ||||||
1.0641+0.53205⇒0.3547 | 42 | 0.79 | 0.16 | 6 | ||
1.0642+0.5321⇒0.35473 | 42.2 | 0.18 | ||||
41 | 3.07 | 0.18 |
相互作用波长[μm] | Φpm[deg] | θpm[deg] | β[fs/mm] |
XY平面,θ=90◦ | |||
SHG, o+o ⇒ e | |||
1.2⇒0.6 | 2.36 | 18 | |
1.1⇒0.55 | 9.37 | 37 | |
1.0⇒0.5 | 15.74 | 59 | |
0.9⇒0.45 | 22.94 | 86 | |
0.8⇒0.4 | 31.69 | 123 | |
0.7⇒0.35 | 43.38 | 175 | |
0.6⇒0.3 | 62.63 | 257 | |
YZ平面,φ=90◦ | |||
SHG, o+e ⇒ o | |||
1.1⇒0.55 | 15.98 | 82 | |
1.0⇒0.5 | 28.96 | 106 | |
0.9⇒0.45 | 45.36 | 139 | |
0.8⇒0.4 | 76.88 | 186 |
λ[µm] | τp [ns] | Ithr [GW/cm2] | Note |
0.2661 | 12 | >0.04 | |
0.308 | 17 | >0.05 | |
0.0003 | 47,000 | sharp focusing | |
0.3547 | 18 | >0.18 | 10Hz |
8 | >0.1 | ||
7 | >0.14 | ||
0.03 | >9.4 | 10Hz | |
0.015 | >2.8 | ||
0.018 | >5 | ||
0.025 | >6 | 10Hz | |
0.5145 | CW | >0.00003 | |
0.5235 | 0.055 | >1.1 | 500Hz |
0.5321 | CW | >0.0004 | |
60 | >0.07 | 900Hz | |
10 | >0.22 | ||
0.1 | >4.5 | 500Hz | |
0.035 | >3.1 | ||
0.015 | >4.4 | ||
0.592 | 0.0005 | >50 | 1kHz |
0.605 | 0.0002 | >25 | |
0.616 | 0.0004 | 31,000 | sharp focusing |
0.652 | 0.02 | >0.81 | |
0.7–0.9 | 10 | >0.03 | 10Hz |
0.71–0.87 | 25 | 1.1–1.4 | 25Hz |
0.72–0.85 | 0.001 | >8 | |
0.77–0.83 | 0.00005 | >22 | 80MHz |
1.0642 | CW | >0.001 | |
60 | >0.06 | 1333Hz | |
18 | >0.6 | 10Hz | |
9 | >0.9 | 10Hz | |
8 | >0.5 | ||
1.3 | 19 | ||
1.1 | 45 | bulk damage | |
0.1 | 25 | ||
0.035 | >4.8 | ||
0.025 | >3.3 | 10Hz | |
1.0796 | 5 | 20 | 1–25Hz |
0.04 | 30 |
对于0.4–1.0µm的光谱范围和293–338K的温度范围(λin µm):dnX/dT=-1.8×10-6K-1
dny/dT=-13.6×10-6K-1
dnz/dT=-(6.3+2.1λ)×10-6K-1
对于0.4–1.0 µm的光谱范围和293–383K的温度范围(λin µm):dnX/dT=-(3.76λ-2.3)×10-6K-1
dny/dT=-(19.40-6.01λ)×10-6K-1
dnz/dT=-(9.70-1.50λ)×10-6K-1
对于λ= 0.6328µm和温度范围293–473K(λ以µm为单位,T以K为单位):dnX/dT=[0.20342-1.9697×10-2 (T-273)-1.4415×10-5(T-273)2]×10-6K-1
dny/dT=-[10.748+7.1034×10-2 (T-273) +5.7387×10-5(T-273)2]×10-6K-1
dnz/dT=-[0.85998+1.5476×10-1 (T-273) -9.4675×10-4(T-273)2+2.2375×10-6(T-273)3]×10-6K-1
在P = 0.101325 MPa时的比热cp | |||
T [K] | cp[J/kgK] | ||
298 | 1060 | ||
线性吸收系数α | |||
λ[µm] | α [cm-1] | ||
0.35–0.36 | 0.0031 | ||
1.0642 | 0.00035 | ||
双光子吸收系数β | |||
λ[µm] | τp[ns] | β×1011[cm/W] | Note |
0.211 | 0.0009 | 103±36 | θ =90°, Φ=30° |
0.264 | 0.0008 | 15±5 | θ =90°, Φ=30° |
非线性折射率γ | |||
λ[µm] | γ×1015[cm2/W] | Note | |
0.78 | 0.26±0.03 | [100] 方向 | |
0.19±0.03 | [010] 方向 | ||
0.85 | 0 .19±0.04 |
LBO传输频谱 | LBO非线性晶体的SHG调谐曲线 |
在不同的泵浦光(即530 nm,355 nm和266 nm)下,LBO(在“ XY”平面上的TypeI(ooe))的OPO调谐曲线 |
LBO晶体案例(一)
尺寸:3*3*10 mm;
抛光:2面抛光;
无涂层
LBO晶体案例(二)
尺寸,mm:3*3 (+0/-0.1);
涂层:AR @ 1064 + 532 nm/355 nm;
激光诱导损伤阈值:>10 J/cm² @ 1064 nm、10 ns、10 Hz
LBO晶体案例(三)
规格:3×3×10 mm, 3×3×20 mm, 3×3×30 mm;
2面抛光(3*3 mm)
镀膜: S1/S2,AR/AR@1020 –1180 nm&530 -590nm,双侧
LBO晶体案例(四)
规格:3×3×15 mm;
SHG 640 nm / 320 nm
LBO晶体案例(五)
规格:3×3×30 mm;
镀膜: S1/S2: AR @ 532 nm + AR @ 690-990 nm
LBO晶体案例(六)
规格:6×6×0.9 mm;
镀膜: AR @ 1030 + 515 nm/ 1030 + 515 nm
- 对水分的敏感性低
- 分散角小
- 高光学均匀性
- 可调波长范围大
- 透明区域广泛
- 损坏阈值很高
- 宽接受角
材料加工
光通讯
全息摄影
医疗应用
- 1300nm激光
- 双波长(1064nm 532nm)激光器
- OPA(光参量放大器)和OPO(振荡器)
- SHG(频率谐波加倍)和THG(滴流谐波加倍)
- 二极管泵浦的Nd:YLF激光器和Nd:YAG激光器。翠绿宝石,钛:蓝宝石,染料激光器,超短脉冲激光器
[1] Zubrinov I I , Sapozhnikov V K , Pylneva N A , et al. Elastic and elastooptic properties of LiB 3O 5[J]. Ceramics International, 2004, 30(7):1675-1677. |
[2] Reinvestigation on the phase transition of a LiB3O5 crystal near its melting point[J]. Journal of Crystal Growth, 2016, 435:1-5. |
[3] A Y J , A C L J , A L W , et al. The optical properties of planar waveguides in LiB3O5 crystals formed by Cu+ implantation – ScienceDirect[J]. Applied Surface Science, 2006, 253( 5):2674-2677. |
[4] Yang L , Yue Y , Mao Q , et al. Growth and nonlinear optical properties of Zn-doped LiB3O5 crystals[J]. Optical Materials, 2015, 43:6-9. |
[5] Kananen B E , Mcclory J W , Giles N C , et al. Copper-doped lithium triborate (LiB3O5) crystals: A photoluminescence, thermoluminescence, and electron paramagnetic resonance study[J]. Journal of Luminescence, 2017:S0022231317309109. |
[6] Shepelev Y F , Bubnova R S , Filatov S K , et al. LiB3O5 crystal structure at 20, 227 and 377°C[J]. Journal of Solid State Chemistry, 2005, 178(10):2987-2997. |
[7] Nikolov I , Perlov D , Livneh S , et al. Growth and morphology of large LiB 3O 5 single crystals[J]. Journal of Crystal Growth, 2011, 331(1):1-3. |
[8] Surovtsev N V , Malinovsky V K , Solntsev V P , et al. Peculiarities of LiB3O5 crystallization from melts studied by Raman spectroscopy[J]. Journal of Crystal Growth, 2008, 310(15):3540-3544. |
[9] Ogorodnikov I N , Kruzhalov A V , Porotnikov A V , et al. Dynamics of electronic excitations and localized states in LiB3O5[J]. Journal of Luminescence, 1998, 76-77(2):464-466. |
[10] I. N , Ogorodnikov, and, et al. Sub-nanosecond time-resolved spectroscopy of LiB3O5 under synchrotron radiation[J]. Journal of Luminescence, 1997. |
[11] Depci T , Oezbayoglu G , Yilmaz A , et al. The thermoluminescent properties of lithium triborate (LiB3O5) activated by aluminium[J]. Nuclear Inst & Methods in Physics Research B, 2008, 266(5):755-762. |
[12] Neumair S C , Vanicek S , Kaindl R , et al. High-pressure synthesis and crystal structure of the lithium borate HP-LiB3O5[J]. Journal of Solid State Chemistry, 2011, 42(52):no-no. |
[13] Kannan C , Kimura H , Miyazaki A , et al. Nucleation, growth and characterization of LiBO single crystals[J]. Journal of Crystal Growth, 2005, 275(1–2):e769-e774. |
[14] Lim A R , Yoon C S . Structural nature of 7Li and 11B sites in the nonlinear optical material LiB3O5 using static NMR and MAS NMR[J]. Materials Chemistry & Physics, 2014, 147(3):644-648. |
[15] Li H Q , Zhang H B , Bao Z , et al. High-power nanosecond optical parametric oscillator based on a long LiB3O5 crystal[J]. Optics Communications, 2004, 232(1-6):411-415. |
[16] Kannan C , Ganesamoorthy S , Rajesh D , et al. Anisotropic properties of self-flux grown LiB 3O 5 single crystals[J]. Solid State Communications, 2005, 136(4):215-219. |
[17] Ogorodnikov I N , Isaenko L I , Kruzhalov A V , et al. Thermally stimulated luminescence and lattice defects in crystals of alkali metal borate LiB3O5 (LBO)[J]. Radiation Measurements, 2001, 33(5):577-581. |
[18] Sabharwal S C , Tiwari B , Sangeeta. Investigations on the growth of LiB 3 O 5 crystal by top-seeded solution growth technique[J]. Journal of Crystal Growth, 2004, 263(1/4):327-331. |
[19] Sabharwal S C , Tiwari B , Sangeeta. Effect of highest temperature invoked on the crystallization of LiB 3O 5 from boron-rich solution[J]. Journal of Crystal Growth, 2003, 249(3):502-506. |
[20] Almeida A , Thomazini D , Vasconcelos I F , et al. Structural studies of lithium triborate (LBO–LiB3O5) in borophosphate glass-ceramics[J]. International Journal of Inorganic Materials, 2001, 3(7):829-838. |
发表回复