磷酸钛氧钾(KTiOPO4,简称KTP)有很高的非线性系数(约为KDP的15倍)、高热导率(为BNN晶体的2倍),容许温度匹配和容许角度匹配范围大,抗灰迹、抗光损伤阈值高,不吸潮、不潮解,在900℃以下不分解,机械性能良好、晶体表面易于抛光,失配度小。其对1064nm的倍频效率可达约80%,该晶体可用于制作倍频、混频、电光调制、光学参量振荡和光学波导等元器件。
参数
属性 | 数值 |
化学式 | KTiOPO4 |
晶体结构 | 斜方晶系,空间群Pna21,点群mm2 |
晶格参数 | a=6.404Å, b=10.616Å, c=12.814Å, Z=8 |
熔点 | 1172°C |
莫氏硬度 | 5 |
密度 | 3.01 g/cm3 |
导热系数 | 13W/m/K |
热膨胀系数 | ax=11×10-6/℃, ay=9×10-6/℃, az=0.6×10-6/℃ |
损伤阈值: [GW/cm ] | >0.5 @1064 nm,TEM00, 10ns,10HZ(AR-coated) |
>0.3 @532 nm,TEM00, 10ns,10HZ(AR-coated) | |
SHG相位匹配范围 | 497 ~ 1800nm (Type II) |
Non-vanished 非线性磁化系数 | deff(II)≈(d24– d15)sin2φsin2θ- (d15sin2φ+ d24cos2φ)sinθ |
d31=6.5 pm/V | |
d24=7.6 pm/V | |
d32= 5 pm/V | |
d15=6.1 pm/V | |
d33=13.7 pm/V | |
热光系数 | dnx/dT=1.1*10-5/℃ |
dny/dT=1.3*10-5/℃ | |
dnz/dT=1.6*10-5/℃ | |
Nd:YAG激光器的类型II SHG@1064nm | 温度接收: 24°C·cm |
光谱接收: 0.56nm·cm | |
角度接收: 14.2mrad·cm (φ); 55.3mrad·cm(θ) | |
离散角: 0.55° |
透射范围 | 350~4500nm |
吸收系数 | <0.1%/cm @ 1064nm;<1%/cm @ 532nm |
折射率 | nx=1.7377, ny=1.7453, nz=1.8297 @1064nm |
nx=1.7780, ny=1.7886, nz=1.8887 @532nm | |
Sellmeier 方程(λ in μm) | nx2=3.0065+0.03901/(λ2-0.04251)-0.01327λ2 |
ny2=3.0333+0.04154/(λ2-0.04547)-0.01408λ2 | |
nz2=3.3134+0.05694/(λ2-0.05658)-0.01682λ2 |
KTP晶体用于1064nm到532nm倍频
GTR-KTP;规格:3x3x7.2mm;
镀膜:AR/AR@1064/532nm, R<0.2@1064nm,R<0.5@532nm;
损伤阈值:>600MW/cm2,1064nm,10ns,10Hz
KTP晶体案例(二)
规格:15×15×1 mm;
定向: X-cut;
双面抛光 (15*15 mm)
- 耐高温;
- 热导率高;
- 失配度小;
- 抗阻比值大;
- 透光波段宽;
- 温度敏感性低;
- 机械性能良好;
- 非线性光学系数大;
- 化学机械性能稳定;
- 光电系数高,介电常数低;
532nm激光
医学应用:532 nm KTP激光治疗寻常性痤疮的疗效评估
532 nm KTP激光器是通过使用磷酸钾钛氧化物(KTiOPO4)将Nd:YAG激光辐射倍频而产生的。该波长适合于浅表血管和色素性病变的治疗,并且可用于寻常痤疮和酒渣鼻的治疗。对于寻常痤疮,细菌卟啉的光活化,皮脂生成的减少以及对皮脂腺的附带损害是其作用方式的拟议机制。
532nm KTP激光治疗寻常痤疮疗效评价
医学应用:磷酸钛氧钛(KTP)激光在梨状窝血管瘤的切除中的应用
在激光器中,KTP-532激光器具有多个优点,使其非常适合于切除血管瘤。磷酸磷酸钛氧钾(KTP)激光器的波长在可见光范围内(532 nm)。它不需要瞄准光束,可以通过光纤传输。它也优先被血红蛋白吸收,因此对血管损伤有效。KTP-532激光辅助切除是一种微创方法,具有出血量最少的优势。KTP-532激光具有明显的优势,因为它在切口的任一侧都产生了一个凝结区,并且在切割时似乎可以密封伤口边缘。这是一种快速,耐受良好的微创手术。用这种方法可以避免外部切口和疤痕。这是一种简单,安全,有效的手术治疗方法,在将来具有很大的潜力。
磷酸钛氧钛钾(KTP)激光在梨状窝血管瘤的切除中的应用
1μmNd激光器的辐射
调制器和Q开关:KTiOPO4(KTP)是一种相对较新的材料,被广泛用于将Nd激光器的1μm辐射倍频。
它的高非线性光学d系数,高光学损伤阈值,宽接受角和热稳定的相位匹配特性使其可用于此目的,其大的电光r系数和低介电常数使其对于各种电光应用(例如调制器)具有吸引力和Q开关。
磷酸钛酸钾(KTP):性能,最新进展和新应用
[1] Taniuchi T , Shikata J , Ito H . Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator[J]. Electronics Letters, 2000, 36(16):1414-1416. |
[2] Kato K . Temperature insensitive SHG at 0.5321 mu m in KTP[J]. IEEE Journal of Quantum Electronics, 1992, 28(10):1974-1976. |
[3] My A , Yx B , Ys A , et al. Study of the plasma produced from laser ablation of a KTP crystal[J]. Applied Surface Science, 2003, 207( 1–4):227-235. |
[4] Kojima T , Fujikawa S , Yasui K . Stabilization of a High-Power Diode-Side-Pumped Intracavity-Frequency-Doubled CW Nd:YAG Laser by Compensating for Thermal Lensing of a KTP Crystal and Nd:YAG Rods[J]. IEEE Journal of Quantum Electronics, 1999, 35(3):377-380. |
[5] Desalvo R , Hagan D J , Sheik-Bahae M , et al. Self-focusing and self-defocusing by cascaded second-order effects in KTP[J]. Optics Letters, 1992, 17(1):28-30. |
[6] Taira T , Kobayashi T . Q-Switching and Frequency Doubling of Solid-State Lasers by a Single Intracavity KTP Crystal[J]. IEEE Journal of Quantum Electronics, 1994, 30(3):800-804. |
[7] Bierlein J D , Lin J T . Potassium Titanyl Phosphate (KTP): Properties, Recent Advances And New Applications[J]. Proceedings of SPIE – The International Society for Optical Engineering, 1989, 1104:2-12. |
[8] Umbrasas A , Diels J C , Jacob J , et al. Parametric oscillation and compression in KTP crystals[J]. Optics Letters, 1994, 19(21):1753-1755. |
[9] Boulanger B , Rousseau I , Feve J P , et al. Optical studies of laser-induced gray-tracking in KTP[J]. IEEE Journal of Quantum Electronics, 1999, 35(3):281-286. |
[10] Petrov D V , Torner L , Martorell J , et al. Observation of azimuthal modulational instability and formation of patterns of optical solitons in a quadratic nonlinear crystal[J]. Optics Letters, 1998, 23(18):1444-6. |
[11] Qiu G , Huang H T , Zhang B T , et al. Highly efficient intracavity frequency doubling 532-nm laser based on the gray tracking resistance KTP crystal[J]. Laser Physics, 2010, 20(4):777-780. |
[12] Englander, Lavi, Katz, et al. Highly efficient doubling of a high-repetition-rate diode-pumped laser with bulk periodically poled KTP.[J]. Optics letters, 1997. |
[13] Ebbers C A , Velsko S P . High average power KTiOPO4 electro-optic Q-switch[J]. Applied Physics Letters, 1995, 67(5):593-595. |
[14] Bordui P F , Jacco J C , Loiacono G M , et al. Growth of large single crystals of KTiOPO4 (KTP) from high-temperature solution using heat pipe based furnace system[J]. Journal of Crystal Growth, 1987, 84(3):403–408. |
[15] Pierrou M , F Laurell, Karlsson H , et al. Generation of 740??mW of blue light by intracavity frequency doubling with a first-order quasi-phase-matched KTiOPO4 crystal[J]. Optics Letters, 1999, 24(4):205-207. |
[16] Gao J , Cui F , Xue C , et al. Generation and application of twin beams from an optical parametric oscillator including an ?-cut KTP crystal[J]. Optics Letters, 1998. |
[17] Wang W , Ohtsu M . Frequency-tunable sum- and difference-frequency generation by using two diode lasers in a KTP crystal[J]. Optics Communications, 1993, 102(3-4):304-308. |
[18] Driscoll T A , Hoffman H J , Stone R E , et al. Efficient second-harmonic generation in KTP crystals[J]. Optical Society of America, Journal, B: Optical Physics (ISSN 0740-3224), vol. 3, May 1986, p. 683-686. Research supported by Lockheed Independent Research Funds. 1986, 3. |
[19] Pasiskevicius V , Wang S , Tellefsen J A , et al. Efficient Nd:YAG laser frequency doubling with periodically poled KTP[J]. Applied Optics, 1998, 37(30):7116-9. |
[20] Rafailov E U , Sibbett W , Mooradian A , et al. Efficient frequency doubling of a vertical-extended-cavity surface-emitting laser diode by use of a periodically poled KTP crystal[J]. Optics Letters, 2003, 28(21):2091-2093. |
[21] Zheng Y Q , Zhu H Y , Huang L X , et al. Efficient 532 nm laser using high gray-tracking resistance KTP crystal[J]. Laser Physics, 2010, 20(4):756-760. |
[22] Chuang T , Hays A D , Verdun H R . Effect of dispersion on the operation of a KTP electro-optic Q switch[J]. Applied Optics, 1994, 33(36):8355-60. |
[23] Tang M , Minamide H , Wang Y , et al. Dual-wavelength single-crystal double-pass KTP optical parametric oscillator and its application in terahertz wave generation[J]. Optics Letters, 2010, 35(10):1698-700. |
[24] Chen Y F , Huang T M , Wang C L , et al. Compact and efficient 3.2-W diode-pumped Nd:YVO4/KTP green laser[J]. Applied Optics, 1998, 37(24):5727-30. |
[25] Yao J Q , Fahlen T S . Calculations of optimum phase match parameters for the biaxial crystal KTiOPO4[J]. 天津大学学报, 1984, 55(1):65-68. |
[26] Produl Hazarika MS, DLO, FACS, FRCS Edin, FIAO a, B S P D A , B S M J M A , et al. Application of potassium-titanyl-phosphate (KTP) laser in the excision of pyriform fossa hemangioma[J]. American Journal of Otolaryngology, 2006, 27( 2):136-138. |
[27] Boulanger B , JP Fève, Marnier G , et al. Absolute measurement of quadratic nonlinearities from phase-matched second-harmonic generation in a single KTP crystal cut as a sphere[J]. Journal of the Optical Society of America B, 1997, 14(6):1380-1386. |
[28] Xu D G , Yao J Q , Zhang B G , et al. 110 W high stability green laser using type II phase matching KTiOPO4 (KTP) crystal with boundary temperature control[J]. Optics Communications, 2005, 245(1-6):341-347. |
[29] Yilmaz O , Senturk N , Yuksel E P , et al. Evaluation of 532-nm KTP laser treatment efficacy on acne vulgaris with once and twice weekly applications.[J]. Journal of Cutaneous Laser Therapy, 2011, 13(6):303-307. |