用于可见光和近红外激光辐射到紫外波段频率转换的非线性晶体CLBO
硼酸铯锂晶体CsLiB6O10(CLBO)是一种新型的非线性光学硼酸盐晶体,在紫外波段具有优异的非线性光学性质。CLBO晶体具有足够大的非线性系数、短的吸收边、大的角度、光谱和温度带宽等非线性光学特性,非常适合于二阶和高阶谐波的产生,是制备紫外和深紫外全固态激光器的优良材料。紫外吸收边达到180nm。在1064nm倍频时,CLBO的有效非线性光学系数大约是KDP的两倍。CLBO晶体可以从低粘度的化学计量熔体中生长出来。
全固态紫外激光器以其体积小、寿命长、效率高、光束质量好、调谐范围宽、谱线窄等优点,广泛应用于机械探伤、光刻、微加工和医学等领域,等,利用大功率近红外相干光源作为基于非线性调谐技术的基频源,通过多级变频产生紫外相干辐射被认为是发展紫外相干光源的重要途径。紫外相干光源的关键问题是研制紫外波段的非线性光学变频晶体。非线性光学晶体是实现频率变换的条件之一,因此对非线性光学晶体的生长、尺寸、损伤电阻、转换效率和允许的参数范围提出了越来越高的要求。
参数
化学式 | CsLiB6O10 |
晶体结构 | 四方负单轴晶体,42 m |
晶格常数 | a=10.494Å,c = 8.939Å,Z=4 |
质量密度 | 2.461 g/cm3 |
莫氏硬度 | 5.5 |
熔点 | 1118 K |
分子质量 | 364.706 |
导热系数 | 1.25 W/m K |
属性 | Value |
透明范围 | 180-2750 nm |
吸收系数 | 0.0013 cm−1 |
折光指数 | |
1.064微米 | ne = 1.4340, no = 1.4838 |
0.532微米 | ne = 1.4445, no = 1.4971 |
Sellmeier方程(λinμm | no2 = 2.2104+0.01018/(λ2-0.01424)-0.01258λ2 |
属性 | ne2 = 2.0588+0.00838/(λ2-0.01363)-0.00607λ2 |
属性 | 数值 | |||||
NLO系数 | deff(I)=d36sinθmsin(2φ) | |||||
deff(II)=d36sin(2θm)cos(2φ) | ||||||
热光系数 | dno/dT=-1.9*10-6/℃ | |||||
dne/dT=-0.5*10-6/℃ | ||||||
损坏阈值 | 26 GW/cm2 | |||||
波长(nm) | 相位匹配角(°) | 流量(pm / V) | 角度公差(mrad·cm) | 偏角(°) | 光谱接受度(nm·cm) | 温度接受度(℃·cm) |
532 + 532 = 266 | 61.7 | 0.84 | 0.49 | 1.83 | 0.13 | 8.3 |
1064 + 266 = 213 | 68.4 | 0.87 | 0.42 | 1.69 | 0.16 | 4.6 |
λ [μm] | 0.2 |
τp [ns] | 0.00014 |
β × 1011 [cm/W] | 120 ± 20 |
λ[µm] | no | ne |
0.42 | 1.5058 | 1.4517 |
0.45 | 1.503 | 1.4493 |
0.48 | 1.5006 | 1.4474 |
0.5 | 1.4991 | 1.4462 |
0.532 | 1.4971 | 1.4445 |
0.56 | 1.4957 | 1.4434 |
0.59 | 1.4943 | 1.4422 |
0.61 | 1.4935 | 1.4414 |
0.6328 | 1.4928 | 1.4409 |
0.67 | 1.4915 | 1.4398 |
0.7 | 1.4907 | 1.4392 |
0.72 | 1.4902 | 1.4387 |
1.064 | 1.4838 | 1.434 |
d36(0.532 μm) = 0.92 pm/V |
d14(0.852 μm) = 0.69 pm/V |
d36(0.852 μm) = 0.83 pm/V |
d36(1.064μm) = 0.74 pm/V |
相互作用波长[μm] | θpm [deg] | T [◦C] | Δθint [deg] | ΔT [◦C] |
SHG, o + o ⇒ e | ||||
0.946 ⇒ 0.473 | 90 | -15 | 5 | |
0.5235 ⇒ 0.26175 | 65.8 | ~160 | ||
0.5321 ⇒ 0.26605 | 62 | ~140 | ||
61.4 | 20 | 0.23 | 6.2 | |
1.0642 ⇒ 0.5321 | 29.5 | 20 | 0.043 | 52.7 |
1.3382 ⇒ 0.6691 | 27.7 | 20 | 68.7 | |
SFG, o + o ⇒ e | ||||
1.0642 + 0.26605 ⇒ 0.21284 | 67.3 | 20 | 3.6 | |
1.547 + 0.221 ⇒ 0.19338 | 61.7 | 150 | ||
1.9079 + 0.2128 ⇒ 0.1914 | 55 | 20 | 1.2 | |
1.0642 + 0.35473 ⇒ 0.26605 | 50.6 | 20 | 6.1 | |
1.0642 + 0.5321 ⇒ 0.35473 | 39.1 | 20 | 18 | |
SHG, e + o ⇒ e | ||||
1.0642 ⇒ 0.5321 | 42.4 | 20 | 49.4 | |
SFG, e + o ⇒ e | ||||
1.9079 + 0.2128 ⇒ 0.1914 | 57.4 | 20 | 1.1 | |
1.0642 + 0.5321 ⇒ 0.35473 | 48.9 | 20 | 17 |
λ [μm] | τp [ns] | Ithr [GW/cm2] | Note |
0.2 | 0.00014 | >250 | 1 kHz |
0.266 | 8 | 17-19 | 解决问题的增长 |
0.75 | 6.4 | ||
0.75 | 10-Sep | 位错密度〜1.5×104 cm−3 | |
0.75 | 15-20 | 位错密度(0.7至1)×104 cm−3 | |
0.75 | 25 | 刺激解决方案的TSSG增长 | |
0.511 | 20 | >0.5 | 12 kHz |
0.527 | 0.0015 | >47 | 1/6 Hz |
0.532 | 70 | >0.043 | 1 kHz |
7 | >0.13 | 10 Hz | |
0.014 | 130-520 | 一列80个脉冲 | |
0.5395 | 7 | >0.67 | 10 Hz |
0.576 | 8 | >0.1 | 10 Hz |
0.8 | CW | >0.0000038 | |
0.0014 | >600 | 1 kHz | |
1.053 | 0.0015 | >100 | |
1.064 | CW | 0.000088 | |
13 | >0.35 | 10 Hz | |
7 | >0.37 | 10 Hz | |
1.1 | 16–19 | 沿[100]方向 | |
1.1 | 29 | 沿[001]方向 |
λ [μm] | τp [ns] | Ithr [GW/cm2] | Note |
0.266 | 8 | 1.4–1.6 | 常规晶体 |
2 | 解决问题的增长 | ||
1.3–1.5 | 常规晶体,机械抛光 | ||
2.3 | 常规晶体,离子束刻蚀 | ||
1.9 | 优质晶体,机械抛光 | ||
2.9 | 高质量晶体,离子束蚀刻 |
折射率的温度导数 | dno/dT=-12.8-0.328/λ |
dne/dT=-8.36+0.047/λ-0.039/λ2+0.014/λ3 | |
有效二阶非线性系数 | dooe = −d36sin(θ+ρ)sin 2φ |
deoe = doee = 2d36sin(θ+ρ)cos(θ+ρ)cos 2φ |
二次谐波转换效率与输入基本脉冲能量的函数的计算结果 | CLBO透射光谱 |
折射率色散 | I和II型的相位匹配角随基波波长的变化 |
特点
应用
参考文献
新闻
特点
- 其紫外线吸收边缘达到180 nm
- 高效非线性光学系数
- 较大的角度,光谱和温度带宽值
- 高激光损伤阈值
- 小离散角
- 高频转换效率
- 容易长大的单晶
- 低吸收系数
应用
- 全固态紫外线激光器
- 半导体光刻
- PCB钻孔
- 光学参量振荡器
参考文献
[1] Kawamura T , Yoshimura M , Shimizu Y , et al. Crystal growth of CsLiB6O10CsLiB6O10 in a dry atmosphere and from a stoichiometric melt composition[J]. Journal of Crystal Growth, 2010, 312(8):1118-1121. |
[2] AE Kokh, Kononova N G , Lisova I A , et al. CsLiB6O10 crystal: forth and fifth-harmonic generation in Nd:YAP laser[J]. Proceedings of SPIE – The International Society for Optical Engineering, 2001, 4268. |
[3] Lv X , Yuan J L , Dai Y , et al. Study on Ultra-Precise Machining of CLBO Crystal[J]. Key Engineering Materials, 2006, 304-305:398-402. |
[4] Mori Y , Kuroda I , Nakajima S , et al. New nonlinear optical crystal: Cesium lithium borate[J]. Applied Physics Letters, 1995, 67(13):1818-1820. |
[5] Ryu G , Yoon C S , Han T , et al. Growth and characterisation of CsLiB6O10 (CLBO) crystals[J]. Journal of Crystal Growth, 1998, 191(3):492-500. |
[6] Sasaki T , Mori Y , Kuroda I , et al. Caesium Lithium Borate: a New Nonlinear Optical Crystal[J]. Acta Crystallographica, 2010, 51(11):2222-2224. |
[7] Sekine T , Sakai H , Takeuchi Y , et al. High efficiency 12.5 J second-harmonic generation from CsLiB6O10 nonlinear crystal by diode-pumped Nd:glass laser[J]. Optics Express, 2013, 21(7):8393-8400. |
[8] Yu X , Hu Z G . Flux growth of CsLiB6O10 crystals[J]. Journal of Crystal Growth, 2010, 312(16-17):2415-2418. |
[9] Yuan X , Shen G , Wang X , et al. Growth and characterization of large CLBO crystals[J]. Journal of Crystal Growth, 2006, 293(1):97-101. |
[10] Bhar G C , Kumbhakar P , Chatterjee U , et al. Widely tunable deep ultraviolet generation in CLBO[J]. Optics Communications, 2000, 176(1-3):199-205. |
[11] Ono R , Kamimura T , Fukumoto S . Effect of crystallinity on the bulk laser damage and UV absorption of CLBO crystals[J]. Journal of Crystal Growth, 2002, 237:645-648. |
[12] Mori Y , Kuroda I , Nakajima S , et al. Growth of a nonlinear optical crystal: cesium lithium borate[J]. Journal of Crystal Growth, 1995, 156(3):307-309. |
[13] Mirov S B , Fedorov V V , Boczar B , et al. All-solid-state laser system tunable in deep ultraviolet based on sum-frequency generation in CLBO[J]. Optics Communications, 2001, 198(4-6):403-406. |
[14] Pylneva N A , Kononova N G , Yurkin A M , et al. Top-seeded solution growth of CLBO crystals[J]. Proceedings of SPIE – The International Society for Optical Engineering, 1999, 3610:148-155. |
[15] Yap Y K , Inagaki M , Nakajima S , et al. High-power fourth- and fifth-harmonic generation of a Nd:YAG laser by means of a CsLiB(6)O(10).[J]. Optics Letters, 1996, 21(17):1348. |
[16] Sakuma J , Asakawa Y , Obara M . Generation of 5-W deep-UV continuous-wave radiation at 266 nm by an external cavity with a CsLiB6O10 crystal[J]. Optics Letters, 2004, 29(1):92-4. |
[17] Trnovcova, V, Fedorov, et al. Electrical and dielectric properties of b-BaB2O4 (BBO) and CsLiB6O10 (CLBO) crystals[J]. Journal of Physics & Chemistry of Solids, 2007. |
[18] Yap Y K , Inoue T , Sakai H , et al. Long-term operation of CsLiB6O10 at elevated crystal temperature[J]. Optics Letters, 1998, 23(1):34. |
[19] Yap Y K , Haramura S , Taguchi A , et al. CsLiB6O10 crystal for frequency doubling the Nd:YAG laser – ScienceDirect[J]. Optics Communications, 1998, 145( 1–6):101-104. |
[20] Bowers M S , Trautmann T M , Gerstenberger D C . Non-critically phase-matched second-harmonic generation in cesium lithium borate[C]// Advanced Solid-State Photonics. Aculight Corporation, 11805 North Creek Parkway South # 113 Bothell, Washington 98011, 2003. |
[21] Mori Y , Yap Y K , Kamimura T , et al. Recent development of nonlinear optical borate crystals for UV generation[J]. Optical Materials, 2002, 19(1):1-5. |
[22] Bai K , Jung S T . Growth and characterization of pure and Er-doped CsLiB 6O 10 single crystals[J]. Journal of Crystal Growth, 1998, 186(4):612-615. |
[23] Chandra S , Allik T H , Hutchinson J A , et al. Tunable ultraviolet laser source based on solid-state dye laser technology and CsLiB6O10 harmonic generation[J]. Optics Letters, 1997, 22(4). |
[24] Zhou W L , Mori Y , Sasaki T , et al. High-efficiency intracavity continuous-wave ultraviolet generation using crystals CsLiB~6O~1~0, -BaB~2O~4 and LiB~3O~5[J]. OPTICS COMMUNICATIONS, 1996, 123(4). |
[25] Yushi K , Yarborough J M , Li L , et al. Continuous-wave all-solid-state 244 nm deep-ultraviolet laser source by fourth-harmonic generation of an optically pumped semiconductor laser using CsLiB6O10 in an external resonator[J]. Optics Letters, 2008, 33(15):1705-7. |
[26] Petrov V , Noack F , Rotermund F . Sum-Frequency Generation of Femtosecond Pulses in CsLiB(6)O(10) Down to 175 nm.[C]// Conference on Lasers & Electro-optics. 2000. |
[27] Sakuma J , Finch A , Ohsako Y , et al. High-power narrowband DUV laser source by frequency mixing in CLBO[J]. International Society for Optics and Photonics, 2000, 3889:516-523. |
[28] Nishioka M , Kanoh A , Yoshimura M , et al. Growth of CsLiB 6O 10 crystals with high laser-damage tolerance[J]. J.cryst.growth, 2005, 279(1-2):76-81. |
新闻
发表回复