β-BBO晶体—一种广泛使用的非线性晶体,可在紫外线,可见光和近红外线中进行频率转换
BBO晶体是最重要的非线性光学晶体之一,β-硼酸钡(β-BaB2O4,β-BBO)结合了许多杰出的特征,例如其高非线性光学系数,低群速度色散,宽广的透明度范围(189– 3500 nm)和高损伤阈值。这种独特的组合确保β-BBO晶体成为各种非线性光学应用(如变频器和光学参量振荡器)的有希望的候选者。在量子光学领域,β-BBO晶体可用于产生纠缠的光子对和十光子的纠缠。
BBO非线性晶体是一种负性单轴晶体,几乎可以在其整个透明范围(从185 nm至3.3 µm,根据使用几毫米厚的晶体样品的透射率测量得出的结果)中的各种二阶相互作用提供相位匹配,从而使其成为一种在紫外线,可见光和近红外中用于非线性频率转换的广泛使用的晶体。在这方面,BBO晶体是用于近红外光参量pulse脉冲放大器的最重要的非线性晶体,目前,它仅提供很少的具有高平均功率和超高峰值功率的光循环脉冲。
参数
属性 | 数值 |
化学式 | BaB2O4 |
晶体结构 | 三方晶系, 3m |
晶格参数 | a=b=12.532Å,c=12.717Å, Z=6 |
质量密度 | 3.85 g/cm3 |
莫氏硬度 | 4 |
熔点 | 大约1095°C |
导热系数 | 1.2 W/m/K (⊥c); 1.6 W/m/K (//c) |
热膨胀系数 | α,4×10-6/K; c,36×10-6/K |
双折射 | 负单轴 |
属性 | 数值 |
透明范围 | 189 – 3500 nm |
吸收系数 | α<0.1%/cm @1064nm |
折光指数 | |
在1.0642μm | ne = 1.5425, no = 1.6551 |
在0.5321μm | ne = 1.5555, no = 1.6749 |
at 0.2660 μm | ne = 1.6146, no = 1.7571 |
Sellmeier方程(λinμm) | no2(λ) = 2.7359+0.01878/(λ2-0.01822)-0.01354λ2 |
ne2(λ) = 2.3753+0.01224/(λ2-0.01667)-0.01516λ2 |
属性 | 数值 |
SHG相位匹配范围 | 409.6 ∼3500nm (Type I); 525 ∼3500nm (TypeII) |
NLO系数 | d11= 5.8 x d36(KDP); d31 = 0.05 x d11; d22< 0.05 x d11 |
deff(I)=d31sinθ+ (d11cos3φ – d22sin3φ)cosθ | |
deff(II)=(d11sin3φ+ d22cos3θ)cos2θ | |
热光系数 | dno/dT = – 9.3 x 10-6/◦C |
dne/dT = -16.6 x 10-6/◦C | |
电光系数 | g11= 2.7 pm/V, g22, g31< 0.1 g11 |
半波电压 | 48 KV (at 1064 nm) |
损坏阈值 | |
在1.064μm | 5 GW/cm2 (10 ns); 10 GW/cm2 (1.3 ns) |
在0.532μm | 1 GW/cm2 (10 ns); 7 GW/cm2 (250 ps) |
λ[µm] | α [cm-1] | 注意 |
0.1934 | 1.39 | T =295K |
0.29 | T =91K | |
0.213 | <0.21 | 最佳晶体 |
0.264 | 0.04±0.01 | ||c |
0.06±0.003 | ⊥c, o-波 | |
0.10±0.003 | ⊥c, e-波 | |
0.2661 | <0.17 | 最佳晶体 |
0.04–0.15 | ||
0.5321 | 0.01 | |
<0.01 | ||
1 | 0.001–0.002 | |
1.0642 | <0.001 | |
2.09 | 0.0085 | e-波 |
0.07 | o-波 | |
2.55 | 0.5 |
λ[µm] | τp [ns] | β×1011[cm/W] | 注意 |
0.211 | 0.0009 | 243±85 | θ =30◦, φ =0◦ |
0.264 | 0.0008 | 93±33 | θ =30◦, φ =0◦ |
0.00022 | 68±6 | ||c | |
66±7 | ⊥c, o-波 | ||
47±5 | ⊥c, e-波 | ||
0.0002 | 61 | θ =48° | |
0.2661 | 0.015 | 90±10 | ||c |
0.3547 | 0.017 | 1.0±0.2 | ||c |
λ[µm] | no | ne |
0.40466 | 1.69267 | 1.56796 |
0.43583 | 1.68679 | 1.56376 |
0.46782 | 1.68198 | 1.56024 |
0.47999 | 1.68044 | 1.55914 |
0.50858 | 1.67722 | 1.55691 |
0.54607 | 1.67376 | 1.55465 |
0.57907 | 1.67131 | 1.55298 |
0.5893 | 1.67049 | 1.55247 |
0.64385 | 1.66736 | 1.55012 |
0.8189 | 1.66066 | 1.54589 |
0.85212 | 1.65969 | 1.54542 |
0.89435 | 1.65862 | 1.54469 |
1.014 | 1.65608 | 1.54333 |
λ[µm] | γ×1015[cm2/W] | Note |
0.2661 | 0.025±0.008 | ||c |
0.3547 | 0.36±0.08 | ||c |
0.5321 | 0.55±0.10 | ||c |
0.78 | 0.40±0.05 | [100] 方向 |
0.32±0.05 | [010] 方向 | |
0.85 | 0.37 ±0.06 | θ =29.2˚, φ =0◦ |
1.0642 | 0.29 ±0.05 | ||c |
相互作用波长[μm] | θexp [deg] |
SHG, o+o ⇒ e | |
0.4096⇒0.2048 | 90 |
0.41⇒0.20 | 90 |
0.41152⇒0.20576 | 82.8 |
0.41546⇒0.20773 | 79.2 |
0.418⇒0.209 | 77.3 |
0.429⇒0.2145 | 71 |
0.4765⇒0.23825 | 57 |
0.488⇒0.244 | 54.5 |
0.4965⇒0.24825 | 52.5 |
0.5106⇒0.2553 | 50/50.6 |
0.5145⇒0.25725 | 49.5 |
0.5321⇒0.26605 | 47.3/47.5/47.6/48 |
0.589⇒0.2945 | 41.5 |
0.604⇒0.302 | 40 |
0.6156⇒0.3078 | 39 |
0.616⇒0.308 | 38 |
0.70946⇒0.35473 | 32.9/33/33.1/33.3/33.7 |
0.78⇒0.39 | 31/30 |
0.8⇒0.4 | 26.5 |
0.946⇒0.473 | 24.9 |
1.0642⇒0.5321 | 22.7/22.8 |
SFG, o+o ⇒ e | |
0.73865+0.25725⇒0.1908 | 81.7 |
0.72747+0.26325⇒0.1933 | 76 |
0.5922+0.2961⇒0.1974 | 88 |
0.5964+0.2982⇒0.1988 | 82.5 |
0.5991+0.29955⇒0.1997 | 80 |
0.60465+0.30233⇒0.20155 | 76.2 |
0.5321+0.32561⇒0.202 | 83.9 |
0.6099+0.30495⇒0.2033 | 73.5 |
0.5321+0.34691⇒0.21 | 71.9 |
0.7736+0.25787⇒0.1934 | 70.7 |
0.5321+0.35473⇒0.21284 | 70 |
0.51567+0.38675⇒0.221 | 64.7 |
0.804+0.268⇒0.201 | 64 |
0.75+0.375⇒0.25 | 61.7 |
1.0642+0.26605⇒0.21284 | 51.1 |
0.78+0.373⇒0.2523 | 47.4 |
1.0642+0.298⇒0.23281 | 46.1 |
0.5782+0.5106⇒0.27115 | 46 |
0.59099+0.5321⇒0.28 | 44.7 |
0.78+0.43⇒0.2772 | 43.4 |
1.0642+0.35473⇒0.26605 | 40.2 |
1.0641+0.53205⇒0.3547 | 31.3 |
1.0642+0.5321⇒0.35473 | 31.1/31.3/31.4 |
2.68823+0.5712⇒0.4711 | 21.8 |
1.41831+1.0642⇒0.608 | 21 |
SHG, e+o ⇒ e | |
0.5321⇒0.26605 | 81 |
0.70946⇒0.35473 | 48/48.1 |
1.0642⇒0.5321 | 31.6/32.4/32.7/32.9 |
SFG, e+o ⇒ e | |
1.0642+0.35473⇒0.26605 | 46.6 |
1.0642+0.5321⇒0.35473 | 38.4/38.5 |
SFG, o+e ⇒ e | |
1.0642+0.5321⇒0.35473 | 59.8 |
相互作用波长[μm] | θpm [deg] | Δθint [deg] | ΔT [℃] | Δν[cm-1] |
SHG, o+o ⇒ e | ||||
1.0642⇒0.5321 | 22.8 | 0.021 | 37 | 9.7 |
22.7 | 0.03 | 51 | ||
0.5321⇒0.26605 | 47.3 | 0.01 | 4 | |
0.53⇒0.265 | 47.6(298K) | 0.006 | ||
SFG, o+o ⇒ e | ||||
1.0641+0.53205⇒0.3547 | 31.3 | 0.011 | ||
1.0642+0.5321⇒0.35473 | 31.1 | 0.015 | 16 | |
2.44702+0.5712⇒0.4631 | 22.1 | 0.026 | ||
2.68823+0.5712⇒0.4711 | 21.8 | 0.028 | ||
SHG, e+o ⇒ e | ||||
1.0642⇒0.5321 | 32.7 | 0.034 | 8.8 | |
32.4 | 0.046 | 37 | ||
SFG, e+o ⇒ e | ||||
1.0642+0.5321⇒0.35473 | 38.4 | 0.02 | 13 | |
SFG, o+e ⇒ e | ||||
1.0642+0.5321⇒0.35473 | 58.4 | 0.05 | 12 |
相互作用波长[μm] | θpm [deg] | dθpm/dT[deg/K] |
SHG, o+o ⇒ e | ||
0.5321⇒0.26605 | 47.3 | 0.0025 |
1.0642⇒0.5321 | 22.7 | 0.00057 |
SFG, o+o ⇒ e | ||
1.0642+0.5321⇒0.35473 | 31.1 | 0.00099 |
SHG, e+o ⇒ e | ||
1.0642⇒0.5321 | 32.4 | 0.0012 |
SFG, e+o ⇒ e | ||
1.0642+0.5321⇒0.35473 | 38.4 | 0.0015 |
SFG, o+e ⇒ e | ||
1.0642+0.5321⇒0.35473 | 58.4 | 0.00421 |
相互作用波长[μm] | θpm [deg] | β[fs/mm] |
SHG, o+o ⇒ e | ||
1.2⇒0.6 | 21.18 | 54 |
1.1⇒0.55 | 22.28 | 76 |
1.0⇒0.5 | 23.85 | 104 |
0.9⇒0.45 | 26.07 | 141 |
0.8⇒0.4 | 29.18 | 194 |
0.7⇒0.35 | 33.65 | 275 |
0.6⇒0.3 | 40.47 | 415 |
1.0642+0.5321⇒0.35473 | 38.4 | 0.0015 |
SHG, e+o ⇒ e | ||
1.2⇒0.6 | 29.91 | 103 |
1.1⇒0.55 | 31.46 | 130 |
1.0⇒0.5 | 33.73 | 164 |
0.9⇒0.45 | 36.98 | 210 |
0.8⇒0.4 | 41.67 | 276 |
0.7⇒0.35 | 48.74 | 373 |
0.6⇒0.3 | 60.91 | 531 |
λ[µm] | τp[ns] | Ithr[GW/cm2] | Note |
0.2661 | 10 | 0.3 | 10Hz |
8 | >0.12 | ||
2 | 通过直拉法生长的(CZ-BBO) | ||
3 | 通过flux方法(flux-BBO)生长 | ||
3.4 | CZ-BBO,在1193K退火(50小时) | ||
0.308 | 12 | >0.2 | |
0.3547 | 10 | 0.9 | 10Hz |
8 | 25 | 1pulse | |
19 | 1800pulses | ||
0.03 | >0.4 | 10Hz | |
0.015 | >3 | ||
0.4 | 0.0002 | >150 | 10Hz |
0.5106 | 20 | >0.25 | 4kHz |
0.51–0.58 | 20 | 10 | |
0.5145 | CW | >0.0004 | |
0.5321 | 10 | 2.3 | 10Hz |
8 | 48 | 1pulse | |
32 | 1800pulses | ||
0.62 | 0.0002 | >50 | |
0.6943 | 0.02 | 10 | |
0.8 | 0.000025 | >3400 | 1–5kHz |
0.85 | 0.00025 | >93 | 1kHz |
1.054 | 0.005 | 50 | |
1.0642 | 14 | 50 | 1pulse |
23 | 1800pulses | ||
10 | 4.5 | 10Hz |
λ[µm] | τp[ns] | Ithr[GW/cm2] | 注意 |
0.266 | 10 | 0.15 | 10Hz |
0.355 | 10 | 0.5 | 10Hz |
0.51–0.58 | 20 | 1 | 4–14kHz |
0.532 | 10 | 1.3 | 10Hz |
1.064 | 10 | 2.6 | 10Hz |
线性热膨胀系数 | ||
T [K] | αt×106[K-1],||c | αt×106[K-1],⊥c |
293 | 0.36 | -2.54 |
线性热膨胀系数的平均值 | ||
T [K] | αt×106[K-1],||c | αt×106[K-1],⊥c |
298-1173 | 36 | 4 |
在P = 0.101325MPa时的比热容 | ||
T [K] | cp[J/kgK] | |
298 | 490/496 | |
导热系数 | ||
K[W/mK] ,||c | K[W/mK] ,⊥c | |
0.8 | 0.08 | |
1.6 | 1.2 |
BBO传输光谱 | BBO的SHG调谐曲线 |
BBO的OPO调谐曲线(I型(ooe))在不同的泵浦灯下,530 nm, 355 nm 和 266 nm。 | BBO的OPO调谐曲线(II型(eoe))在不同的泵浦灯下,530 nm, 355 nm 和 266 nm。 |
BBO晶体用于SHG@1600 nm
尺寸:4*4*0.1 mm;
通光孔径:>90%;
2面抛光;
镀膜:AR/AR@1600 nm& 800 nm
BBO晶体用于普克尔盒
尺寸:3×3×20 mm;
相位匹配:I型;S1:AR@1030nm(R<0.2%);
S2:AR@1030nm(R<0.2%);
S3:Cr+Au涂层;
S4:Cr+Au涂层
BBO晶体案例(三)
尺寸:4*4*20mm, z-cut;
AR/AR@1030nm,R<0,1%;
X 面上的电极(带有 Au/Cr 电极);
表面质量:10-5 s/d;
损伤阈值:>7J/cm2@1064nm, 10ns,10HZ
BBO晶体案例(四)
尺寸:5*5*10 (+/-0.1)mm,I型,Theta= 65.4°, Phi= 90°
涂层:S1,S2,AR/AR@450 & 225 nm
BBO晶体案例(六)
尺寸:6×6×1 mm,6×6×5 mm;
相位匹配:I类;
镀膜,S1/S2: 保护 AR@515nm
BBO晶体案例(七)用于OPA
尺寸:6×6×1 mm;
相位匹配:type I
镀膜: Protective AR@515nm
BBO晶体案例(八)用于钛宝石激光器的二次谐波
规格:20*20*0.3 mm;
S1&S2: 抛光和AR膜 – 800/400nm
BBO晶体案例(九)用于1500 nm 倍频
规格:2×2×5 mm;
Type I;
AR/AR镀膜
BBO晶体案例(十)用于SHG
① 规格: 6×6×6 mm;
SHG eoe 744 nm → 372 nm;
② 规格: 6×6×9 mm;
SHG eoe 744 nm + 372 nm → 248 nm
BBO晶体案例(十一)
尺寸:5*5 (+/-0.1)mm
厚度: 0.8 (+0/-0.1)mm
镀膜:AR/AR@1030nm&535nm
- 透射范围从190 nm到3500nm
- 良好的物理性能
- 适当的机械性能
- 有效SHG(二次谐波产生)系数大
- 1064 nm处10 J/cm2的100 ps脉冲损坏阈值
- 相位匹配范围从6 nm到3500nm
- 温度带宽约55℃
- 光学均匀性高:δn≈10-6/cm
材料加工
光通讯
雷达与测距
医疗应用
[1] Rahman M A , Alghoraibi I . Theoretical investigation of phase-mismatched second-harmonic conversion efficiency in BBO crystal[J]. Optik – International Journal for Light and Electron Optics, 2018:S0030402618301451. |
[2] Ganeev R A , Kulagin I A , Ryasnyansky A I , et al. Characterization of nonlinear optical parameters of KDP, LiNbO3 and BBO crystals[J]. Optics Communications, 2004, 229(1-6):403-412. |
[3] Ganeev R A , Kulagin I A , Tugushev R I . Characterization of nonlinear refractive indices of KDP, KTP, LiNBO3 and BBO crystals at 1064 nm and 532 nm[C]// Conference on Lasers & Electro-optics. IEEE Xplore, 2003. |
[4] Kokh A E , Bekker T B , Kokh K A , et al. Nonlinear LBO and BBO crystals for extreme light sources. IEEE, 2010:127-129. |
[5] Nautiyal A , Bisht P B . Sum and difference frequency generation of white light continuum with the ps pulses of Nd+3:YAG laser in a thick BBO crystal[J]. Optics Communications, 2007, 278(1):175-179. |
[6] Wu F T , Zhang W Z . Consideration of angular acceptance angle in BBO crystal on a highly efficient second harmonic generation[J]. Optics & Laser Technology, 1998, 30(3-4):189-192. |
[7] Rehse S J , Lee S A . Generation of 125 mW frequency stabilized continuous-wave tunable laser light at 295 nm by frequency doubling in a BBO crystal[J]. Optics Communications, 2002, 213(4-6):347-350. |
[8] Ohara K , Sako M , Nonaka K . 210 nm ultraviolet generation using blue-violet laser diode and BBO SHG crystal[C]// CLEO/Pacific Rim 2003. The 5th Pacific Rim Conference on Lasers and Electro-Optics (IEEE Cat. No.03TH8671). IEEE, 2003. |
[9] Lin G , Strekalov D V , Nan Y . Observation of second harmonic generations from x-cut BBO whispering gallery mode resonators[C]// IEEE Photonics Conference. IEEE, 2012. |
[10] AA Isaev, Jones D R , CE Little, et al. 1.3 W average power at 255 nm by second harmonic generation in BBO pumped by a copper HyBrID laser[J]. Optics Communications, 1996, 132(3-4):302-306. |
[11] Cha Y H , Lee K , Nam S M , et al. Characterization of OPCPA with BBO crystal for femtosecond Ti:sapphire laser pulses[C]// Conference on Lasers & Electro-optics. IEEE, 2003. |
[12] Nikogosyan D N . Beta barium borate (BBO)[J]. Applied Physics A, 1991, 52(6):359-368. |
[13] Anstett G , G?Ritz G , Kabs D , et al. Reduction of the spectral width and beam divergence of a BBO-OPO by using collinear type-II phase matching and back reflection of the pump beam[J]. Applied Physics B, 2001, 72(5):583-589. |
[14] Lee C K , Zhang J Y , Huang J Y , et al. Generation of femtosecond tunable radiation from 380 nm to 450 nm via cascaded wave-mixing in a seeded 405-nm pumped type-I BBO noncollinear optical parametric amplifier[C]// Conference on Lasers & Electro-optics. IEEE, 2003. |
[15] Borsutzky A , R Brünger, Huang C , et al. Harmonic and sum-frequency generation of pulsed laser radiation in BBO, LBO, and KD*P[J]. Applied Physics B, 1991, 52(1):55-62. |
[16] Jing Z , Zhang Q , Qiu K , et al. Author’s personal copy Detection of $ 1 atto-joule signal pulse at 532 nm using a picosecond collinear BBO optical parametric amplifier[J]. Optics Communications, 2013, 291. |
[17] Heitmann U , Ktteritzsch M , Heitz S , et al. Efficient generation of tunable VUV laser radiation below 205 nm by SFM in BBO[J]. Applied Physics B, 1992, 55(5):419-423. |
[18] N?Gele M , Sigrist M W . Femtosecond noncollinear and collinear parametric generation and amplification in BBO crystal[J]. Applied Physics B, 2000, 70(2):163-168. |
[19] J, Lublinski, M, et al. Collinear and non-collinear sum-frequency mixing inβ-BBO for a tunable 195–198 nm all-solid-state laser system[J]. Applied Physics B, 1995, 61(5):529-532. |
[20] Bhar G C , Kumbhakar P , Chatterjee U , et al. Highly efficient deep ultraviolet generation by sum-frequency mixing in a BBO crystal pair[J]. Pramana, 2002, 59(1):69-74. |
[21] Caumes J P , Videau L , Rouyer C , et al. Direct evidence of the non-instantaneous response of n2 induced by cascading phenomena during SHG of femtosecond pulses in a BBO crystal[C]// Conference on Lasers & Electro-optics. IEEE, 2003. |
[22] O, Gobert, G, et al. Efficient broadband 400nm noncollinear second-harmonic generation of chirped femtosecond laser pulses in BBO and LBO[J]. Applied Optics, 2014, 53(12):2646-55. |
发表回复