LiNbO3晶体最重要的缺点之一是易受光折变损伤(通常在蓝光或绿光的连续波照射下,光诱导的折射率变化)。消除这种影响的通常方法是将LN晶体保持在高温(400K或更高)下。防止光折变损伤的另一种方法是掺入MgO(对于同成分LN,通常为5 mol%左右)。结果表明,掺MgO的同成分LiNbO3晶体的矫顽场值远低于未掺MgO的LN晶体,其光折变损伤阈值高于掺5mol%MgO的同成分LN晶体。
MgO:LiNbO3一种非线性晶体优化LiNbO3的性能
纯LiNbO3(LN)是一种很好的光器件候选材料,但由于其低阈值的光损伤特性,有着很大的缺点。掺MgO的LN(同余组分)是解决这一问题的可能途径之一。MgO掺杂在LN中起着重要作用,其阈值激光强度提高了100倍。有趣的一点是,掺杂MgO的LN的每一个物理性质(如转变温度、活化能、光带、光吸收光谱、OH-振动频率的移动、密度和电活化能,基于我们先前的测量4)在MgO浓度略高于5%摩尔时都具有阈值组成。
参数
一级激光抛光规范 | |
方向公差 | <0.5° |
厚度/直径公差 | ±0.1 mm |
表面平整度 | <λ/8@632nm |
波前失真 | <λ/4@632nm |
表面质量 | 20/10 |
平行 | 30〞 |
垂直 | 15ˊ |
通光孔径 | >90% |
倒角 | <0.2×45° |
二级激光抛光规范 | |
方向公差 | <0.2° |
厚度/直径公差 | ±0.02 mm |
表面平整度 | λ/10 @632nm |
波前失真 | <λ/8 @632nm |
表面质量 | 5-Oct |
平行 | 10〞 |
垂直 | 5ˊ |
通光孔径 | >90% |
倒角 | < 0.2×45° |
355nm | 406nm | 532nm | 633nm | 1064nm | ||
铌酸锂 | 25°C | 2.40179 | 2.32631 | 2.23622 | 2.20351 | 2.15714 |
50°C | 2.40343 | 2.32807 | 2.23765 | 2.20458 | 2.15757 | |
75°C | 2.40722 | 2.3308 | 2.2394 | 2.20607 | 2.15884 | |
掺镁铌酸锂 | 25°C | 2.38482 | 2.31248 | 2.2253 | 2.19323 | 2.14757 |
50°C | 2.38778 | 2.31441 | 2.22644 | 2.19424 | 2.14861 | |
75°C | 2.39152 | 2.31718 | 2.22819 | 2.19567 | 2.14966 |
[MgO] | Tc[K] | λcutoff[μm] |
化学计量LN | ||
0 | 1466±2 | |
0.8 | 1479±2 | 0.304 |
2 | 1486±1 | 0.301 |
3.3 | 1485±1 | 0.303 |
4.6 | 1480±2 | |
Congruent LN | ||
0 | 1411 | 0.316 |
>5 | 1486 | |
全等LN晶体“0”透射率范围:0.32–5μm |
λ[µm] | no | ne |
0.4358 | 2.3863 | 2.2802 |
0.4916 | 2.3403 | 2.2416 |
0.5461 | 2.3114 | 2.2172 |
0.577 | 2.2988 | 2.2068 |
0.579 | 2.298 | 2.2062 |
0.6328 | 2.2816 | 2.1922 |
0.6943 | 2.2678 | 2.1805 |
0.84 | 2.246 | 2.1622 |
1.0642 | 2.2272 | 2.1463 |
λ[µm] | no | ne | λ[µm] | no | ne |
0.4047 | 2.4247 | 2.3111 | 0.579 | 2.2982 | 2.2056 |
0.4078 | 2.4202 | 2.3073 | 0.5893 | 2.2945 | 2.2027 |
0.4358 | 2.3863 | 2.2795 | 0.6234 | 2.284 | 2.1938 |
0.4861 | 2.3441 | 2.2444 | 0.6563 | 2.2756 | 2.1867 |
0.4916 | 2.3404 | 2.2412 | 0.6907 | 2.2681 | 2.1802 |
0.4962 | 2.3376 | 2.2389 | 0.6943 | 2.2669 | 2.1793 |
0.5461 | 2.3112 | 2.2167 | 1.064 | 2.2237 | 2.1456 |
0.577 | 2.2989 | 2.2063 |
λ[µm] | γ×1015[cm2/W] | Note |
0.78 | 2.0±0.3 | [100] 方向 |
2.0±0.3 | [010] 方向 |
相互作用波长[μm] | Φexp [deg] | Note |
SHG, o+o ⇒ e | ||
1.0642⇒0.5321 | 74.5 | 5mol% MgO, 全LN |
76 | 5mol% MgO | |
76.5 | 5mol% MgO, Li/Nb=0.97 | |
82.3 | 7mol% MgO | |
1.0795⇒0.53975 | 75.1 | 5mol% MgO, 全LN |
1.0796⇒0.5398 | 74 | 5mol% MgO, Li/Nb=0.97 |
1.3414⇒0.6707 | 54 | 5mol% MgO, 全LN |
Note: The PM angle values are strongly dependent on melt stoichiometry. |
相互作用波长[μm] | T[℃] | 注意 | |
SHG, o+o ⇒ e | |||
1.047⇒0.5235 | 75.3 | ||
1.0642⇒0.5321 | 25.4 | 0.6mol% MgO, 全LN | |
78.5 | 7mol% MgO, 沿X | ||
85–109 | >5mol% MgO | ||
107 | 5mol% MgO | ||
110 | 5mol% MgO | ||
110.6 | 5mol% MgO | ||
110.8 | 7mol% MgO | ||
1.0795⇒0.53975 | 115 | 5mol% MgO, 全LN | |
注意:PM温度值在很大程度上取决于熔体的化学计量。 |
相互作用波长[μm] | T[℃] | θpm[deg] | Δθint[deg] | ΔT[℃] | Note |
SHG, o+o ⇒ e | |||||
1.0642⇒0.5321 | 20 | 76 | 0.063 | 5mol% MgO | |
25.4 | 90 | 0.68 | 0.6mol% MgO | ||
107 | 90 | 2.16 | 0.73 | 5mol% MgO | |
110.6 | 90 | 0.73 | 5mol% MgO |
λ[μm] | τp[ns] | Ithr[GW/cm2] | Note |
0.5321 | CW | >0.002 | 1mol% MgO, Li/Nb=1.38 |
>0.002 | 2mol% MgO, Li/Nb=1.0 | ||
0.002 | 5mol% MgO, congruent LN | ||
>0.006 | 1.8mol% MgO, Li/Nb=0.96–0.99 | ||
≈20 | 0.34 | 5mol% MgO | |
0.778 | 0.002 | >10 | 7mol% MgO |
0.78 | 0.00015 | >15 | |
0.78–0.84 | 0.0001 | >130 | 1kHz, 7mol% MgO |
1.0642 | 25 | >0.025 | 0.6mol%MgO,全LN |
≈20 | 0.61 | 5mol% MgO | |
20 | >0.039 | 10Hz, 5mol% MgO | |
0.04 | >0.8 | 0.6mol%MgO,全LN | |
0.03 | >0.14 | 5Hz, 5mol% MgO | |
1.56 | 0.00008 | >1.36 | 1kHz, 5mol% MgO |
注意:在连续波0.532-μm的辐射下,对整体光折变损伤进行了研究。 |
|d31(0.852µm)|=4.9pm/V |
|d33(0.852µm)|=28.4pm/V |
|d31(1.064µm)|=4.4pm/V |
|d33(1.064µm)|=25.0pm/V |
|d31(1.313µm)|=3.4pm/V |
|d33(1.313µm)|=20.3pm/V |
线性吸收系数 | ||
λ[µm] | α [cm-1] | |
0.5321 | 0.02 | |
1.0642 | <0.01 | |
<0.003 | ||
掺MgO 5 mol%的LiNbO3的折射率的温度导数 | ||
λ[µm] | dno/dT×106[ K-1] | dne/dT×106[ K-1] |
0.53975 | 16.663 | 72.763 |
0.6328 | 12.121 | 64.866 |
1.0795 | 4.356 | 54.19 |
1.3414 | 5.895 | 52.665 |
5mol%MgO掺杂同质LiNbO3矫顽场值对晶体温度的依赖性 | ||
T[K] | P[kV/mm] | |
298 | 4.5 | |
353 | 2.4 | |
393 | 1.8 | |
443 | 1.3 |
LiNbO3和LiNbO3的吸收光谱:MgO(7 mol。%)晶体在吸收边缘区域 | 未掺杂和掺杂MgO的LN晶体的透射光谱 |
具有I型相匹配(oo-e)的LiNbO3:MgO(7 mol。%)晶体中SHG强度的角度依赖性 | MgO:LiNbO3的寻常波和非寻常波在25°C时的热光常数 |
案例
特点
应用
参考文献
新闻
案例
氧化镁铌酸锂晶体,频率转换:SHG,2091nm—1045nm;SFG,2091nm+1045nm—697nm;
- 1. SHG, 2091.0(o)+ 2091.0(o)= 1045.5(e);
镀膜: AR 2091 & 1045 nm R<1%;
方向: θ= 42.90, φ= 0; - 2. SFG, 2091.0(e)+ 1045.0(o)= 696.8(e);
AR 2091 & 1045 nm&697nm R <1%;
方向: θ= 64.2, φ= 0;
氧化镁铌酸锂 (5mol% MgO) 晶体案例(二)
定向:theta =44.1°,phi角=0°;
2 面抛光;
无涂层
特点
- 同质性高
- 透明范围广
- 损伤阈值高
- 良好的光电性能
- 良好的光电弹性
应用
- SHG
利用光接触Nd:YVO4/PPMgOLN的紧凑型532nm微芯片激光器阵列
- 波导调制器
- 作为Nd:YAG激光器的Q开关
- 在室温下用于1064nm激光的倍频
- 电光调制器
- 测距仪
- 激光雷达
- 移动电话
参考文献
[1] Su Z , Meng Q , Zhang B . Analysis on the damage threshold of MgO:LiNbO3 crystals under multiple femtosecond laser pulses[J]. Optical Materials, 2016, 60:443-449. |
[2] Lv J , Cheng Y , Lu Q , et al. Femtosecond laser written optical waveguides in z-cut MgO:LiNbO3 crystal: Fabrication and optical damage investigation[J]. Optical Materials, 2016, 57:169-173. |
[3] Holstein W L . Etching study of ferroelectric microdomains in LiNbO3 and MgO:LiNbO3[J]. Journal of Crystal Growth, 1997, 171(s 3–4):477-484. |
[4] Li Z , Bing P , Yuan S , et al. Investigation on terahertz generation at polariton resonance of MgO:LiNbO3 by difference frequency generation[J]. Optics & Laser Technology, 2015, 69:13-16. |
[5] Chen Y L , Yuan J W , Yan C F , et al. Low-pump-threshold tunable optical parametric oscillator using periodically poled MgO:LiNbO 3[J]. Optics Communications, 2007, 273(2):560-563. |
[6] Lai Y J , Chen J C , Liao K C . Investigations of ferroelectric domain structures in the MgO : LiNbO 3 fibers by LHPG[J]. Journal of Crystal Growth, 2010, 198:531-535. |
[7] Chen Y , Guo J , Liu X , et al. Highly efficient blue light of femtosecond pulses by second-harmonic generation in periodically poled MgO:LiNbO3[J]. Optics Communications, 2004, 238(1-3):201-204. |
[8] Shen J , Ding C . Investigation of operational characteristics of terahertz-wave parametric oscillators pumped by picosecond based on MgO:LiNbO3 crystal[J]. Optik – International Journal for Light and Electron Optics, 2013, 124(15):2140-2146. |
[9] A X C , B Z W , A S H , et al. Optical and structural characterization of annealed proton exchange waveguides in Y-cut MgO:LiNbO 3[J]. Optical Materials, 2005, 27( 10):1596-1601. |
[10] Hong-Ki, Kim, and, et al. Measurement of cascaded phase shift in MgO:LiNbO3 single crystal by nonlinear ellipsometric method[J]. Optics Communications, 1999. |
[11] Burlot R , R Moncorgé, Manaa H , et al. Spectroscopic investigation of Nd3+ ion in LiNbO3, MgO:LiNbO3 and LiTaO3 single crystals relevant for laser applications[J]. Optical Materials, 1996, 6(4):313-330. |
[12] Li Z , Bing P , Xu D , et al. High-power tunable terahertz generation from a surface-emitted THz-wave parametric oscillator based on two MgO:LiNbO3 crystals[J]. Optik – International Journal for Light and Electron Optics, 2013, 124(21):4884-4886. |
[13] Li H P , Tang D Y , Ng S P , et al. Temperature-tunable nanosecond optical parametric oscillator based on periodically poled MgO:LiNbO3[J]. Optics & Laser Technology, 2006, 38(3):192-195. |
[14] Dixit N , Mahendra R , Naraniya O P , et al. High repetition rate mid-infrared generation with singly resonant optical parametric oscillator using multi-grating periodically poled MgO:LiNbO3[J]. Optics & Laser Technology, 2010, 42(1):18-22. |
[15] 代丽, 刘春蕊, 闫哲华, et al. Effect of dopant concentration on the spectra characteristic in Zr4+ doped Yb:Nd:LiNbO3 crystals[J]. Journal of Rare Earths, 2017(35):761-766. |
[16] Bhushan R , Yoshida H , Tsubakimoto K , et al. High efficiency and high energy parametric wavelength conversion using a large aperture periodically poled MgO:LiNbO3[J]. Optics Communications, 2008, 281(14):3902-3905. |
[17] Jiang L , Li B , Wang H F . Infrared absorption study of OH in MgO:LiNbO 3 doped with Cr and Nd[J]. Physics Letters A, 1995, 205(1):112-116. |
[18] Zhang B , Jiao Z , Wang B . Efficient second-harmonic generation from polarized thulium-doped fiber laser with periodically poled MgO:LiNbO3[J]. Optics & Laser Technology, 2015, 69:60-64. |
[19] Rodriguez-Mendoza, U. R , Santiuste M , et al. Pressure-induced effects on the spectroscopic properties of Nd3+ in MgO:LiNbO3 single crystal. A crystal field approach[J]. Journal of Luminescence: An Interdisciplinary Journal of Research on Excited State Processes in Condensed Matter, 2017. |
新闻
发表回复