掺钴铝酸镁尖晶石(Co:MgAl2O4, Co:Spinel)允许在眼睛安全波长1.5um附近产生具有高峰值功率的纳秒短脉冲,非常适合遥测应用。掺Co2+的MgAl2O4在1200~1600nm波长范围内有较宽的吸收光谱,表明Co2+离子取代了MgAl2O4晶格中四面体配位的Mg2+离子。固体可饱和吸收体固体激光器的被动调Q是一种非常有吸引力的调Q技术,因为它可以开发出紧凑、低成本的纳米和亚纳秒脉冲激光源,应用范围广泛
钴尖晶石(Co:Spinel) –用于对人眼安全的1.5μm波长工作的固态激光器进行无源Q转换的饱和吸收体
在1.5μm的激光发射对于一些工业应用非常有兴趣。这首先是由于1.5微米辐射的眼睛安全性。该波长的其他优点是在大气和熔融石英波导中的高透明度,以及敏感的室温光探测器(Ge和InGaAs光电二极管)的可用性。所有这些都使得1.5μm激光器在测距仪、环境传感、电信、外科等领域的应用非常有吸引力。钴尖晶石吸收峰值在1520nm附近,这是最常用的眼睛安全激光。1520nm处的吸收截面为3.5×10-19cm2,1331处为2.8×10-19cm2,报道了Er、Yb玻璃和Nd:GYSGG、Nd:YALO3.的Q开关晶体。
参数
属性 | 数值 |
化学式 | Co2+:MgAl2O4 |
晶体结构 | 立方 |
晶格参数 | 8.07Å |
密度 | 3.62 g/cm3 |
熔点 | 2105°C |
折光率 | n=1.6948 @1.54 μm |
导热系数/((W·cm-1·K-1 @ 25°C) | 0.033W |
热膨胀/(10-6 /°C @ 25°C) | 1.046 |
比热/(J·g-1·K-1) | 5.9 |
硬度(莫氏) | 8.2 |
消光比 | 25dB |
取向 | [100] or [111] < ±0.5° |
光密度 | 0.1-0.9 |
损坏阈值 | >500 MW/cm2 |
Co2 +的掺杂浓度 | 0.01-0.3 atm% |
属性 | 数值 |
浓度 | (0.05~0.35) wt% |
吸收系数 | 0 ~ 7 cm-1 |
基态吸收截面GSA(E-19 cm2) | 2.8(±0.4)@1340nm |
激发态吸收截面ESA(E-20 cm2) | 2.0(±0.6)@1340nm |
基态吸收截面GSA(E-20 cm2) | 3.5(±0.4)@1540nm |
激发态吸收截面ESA(E-20 cm2) | 1.0(±0.6)@1540nm |
工作波长 | 1200 – 1600 nm |
最终配置 | Flat/Flat |
品质因数(FOM) | 100~300 |
涂层 | AR/AR@1540,R<0.2%; |
AR/AR@1340,R<0.2% |
Co:Spinel晶体案例(一)
尺寸:4.2*4.2 (+/-0.2) mm;
厚度:1.5(+/- 0.5);
初始透过率:95% (+/-0.5%);
镀膜,S1/S2:AR/AR@1540nm
Co:Spinel晶体案例(二)
尺寸,mm:Ø6;
厚度,mm:1;
初始透过率:90 +/-0.5%;
表面质量,S-D:20-10
Co:Spinel晶体案例(三)
规格:Φ6×1 mm;
初始透过率: 90 +/-0.5 %
Co:Spinel晶体案例(四)
规格:Φ6×1.145 mm;
双面抛
Co:Spinel晶体案例(五)
规格:4.3×4.3×(0.8-1.5) mm
T0=92.5±0.1%@1540 nm
双面抛
Co:Spinel晶体案例(六)
规格:Ø6×1 mm;
初始透过率: 90 +/-0.5 %
- 稀有激发吸收
- Q开关高常数
- 高吸收段
- 使用寿命长
- 钴分布均匀
- 吸收带宽
[1] Denker B , Galagan B , Kisel V , et al. Passive shutters for Q-switching continuously diode-pumped Er-glass laser[M]. 2005. |
[2] K, Izumi, S, et al. Optical properties of 3d transition-metal-doped MgAl2O4 spinels[J]. Physical Review B, 2007, 76(7):75111-75111. |
[3] Nataf L , F Rodríguez, Valiente R . Pressure-induced Co2+ photoluminescence quenching in MgAl2O4[J]. Physical review. B, Condensed matter, 2012, 86(12):4995-5013. |
[4] Yumashev K V , Denisov I A , Kuleshov N V . Passive Q-switching of 1.34-/spl mu/m neodymium laser using Co/sup 2+/:LiGa/sub 5/O/sub 8/ and Co/sup 2+/:MgAl/sub 2/O/sub 4/[C]// Conference Digest. 2000 Conference on Lasers and Electro-Optics Europe (Cat. No.00TH8505). IEEE, 2000. |
[5] Lin H Y , Sun D , Copner N , et al. Nd:GYSGG laser at 1331.6 nm passively Q-switched by a Co:MgAl2O4 crystal[J]. Optical Materials, 2017, 69:250-253. |
[6] Bajor A L , Chmielewski M , Diduszko R , et al. Czochralski growth and characterization of MgAl2O4 single crystals[J]. Journal of Crystal Growth, 2014, 401(sep.1):844-848. |
[7] Javed, Ahmad, Maria, et al. Effect of Co2+ substitution on MgAl2O4 studied by infrared reflectance spectroscopy[J]. Optik International Journal for Light & Electron Optics, 2017. |
[8] Belghachem N , Mlynczak J , Kopczynski K , et al. Thermal analysis of a diffusion bonded Er3+,Yb3+:glass/Co2+: MgAl2O4 microchip lasers[J]. Optical Materials, 2016, 60:546-551. |
[9] Nabil, Belghachem, Jaroslaw, et al. Comparison of laser generation in thermally bonded and unbonded Er3+,Yb3+:glass/Co2+:MgAl2O4 microchip lasers[J]. Optical Materials, 2015. |
[10] Duan X L , Song C F , Wu Y C , et al. Preparation and optical properties of nanoscale MgAl 2O 4 powders doped with Co 2+ ions[J]. Journal of Non-Crystalline Solids, 2008, 354(29):3516-3519. |
[11] Yumashev K V , Denisov I A , Posnov N N , et al. Nonlinear absorption properties of Co2+:MgAl2O4 crystal[J]. Applied Physics B, 2000, 70(2):179-184. |
[12] Kanwal K , Ismail B , Rajani K S , et al. Effect of Co2+ Ions Doping on the Structural and Optical Properties of Magnesium Aluminate[J]. Journal of Electronic Materials, 2017. |
[13] Ryabtsev G L , Bezyazychnaya T V , Bogdanovich M V , et al. Optimized diode-pumped passive Q-switched ytterbium–erbium glass laser[J]. Applied Physics B, 2012, 108(2):283-288. |
[14] Tolstik N A , Troshin A E , Kurilchik S V , et al. Spectroscopy, continuous-wave and Q-switched diode-pumped laser operation of Er3+,Yb3+:YVO4 crystal[J]. Applied Physics B, 2007, 86(2):275-278. |
[15] Mlynczak J , Belghachem N . Monolithic thermally bonded Er3+, Yb3+:glass/Co2+:MgAl2O4 microchip lasers[J]. Optics Communications, 2015, 356(4):166-169. |
[16] Duan X L , Yuan D R , Cheng X F , et al. Absorption and photoluminescence characteristics of Co 2+:MgAl 2O 4 nanocrystals embedded in sol–gel derived SiO 2-based glass[J]. Optical Materials, 2004, 25(1):65-69. |
[17] Nemec M , Jelinkova H , Sulc J , et al. Passive Q-switching at 1645 nm of Er:YAG laser with Co:MALO saturable absorber[C]// Quantum Electronics Conference & Lasers & Electro-optics. IEEE, 2012. |
[18] Bhardwaj A , Agrawal L , Pal S , et al. Optimization of passively Q -switched Er:Yb:Cr:phosphate glass laser: theoretical analysis and experimental results[J]. Applied Physics B, 2007, 86(2):293-301. |
[19] Kalashnikov V L , Shcherbitsky V G , Kuleshov N V , et al. Pulse energy optimization of passively Q-switched flash-lamp pumped Er:glass laser[J]. Applied Physics B, 2002, 75(1):35-39. |
发表回复