RbTiOPO4(RTP)晶体是一种具有优良综合性能的非线性光学晶体材料。RTP是目前最常用的具有高频率重复,高功率和窄脉冲宽度激光器Q开关的实用电光晶体。RTP电光器件具有出色的综合性能,不仅用于激光微加工和激光测距,而且还用于重大的科学勘探项目。
RbTiOPO4(RTP)–具有大的非线性光学系数,大的电光系数,高的光致抗蚀剂损伤阈值和稳定的理化性质的晶体
生长温度范围为950°C至800°C,生长期通常为45至60天,由于RTP的透明范围为0.4至3.5μm,因此可用于多种类型的激光器,例如Er:YAG激光器2.94微米,效率相当高。使用光热公共路径干涉仪,在1.064μm处的体积吸收测量范围为50至150 ppm。
参数
高损伤阈值 | 在10 mm长的涂层晶体上以10 Hz时> 15 J / cm2,1064 nm时为10 ns |
低工作电压 | 在1064 nm处,对Y形切割施加1300 V电压,对X形切割施加1600 V电压,这对晶体的孔径为4×4mm²,长度为2×10 mm |
低体积吸收 | 在1064 nm下<250 ppm / cm |
平均折射率 | 1.8 | |||||
对于0.5 <λ<3.5μm的Sellmeier方程系数 | Ai | Bi | Ci | Di | Ei | pi |
2.1982 | 0.8995 | 0.2152 | 1.5433 | 11.585 | 1.9727 | |
2.2804 | 0.8459 | 0.2296 | 1.1009 | 9.66 | 1.9696 | |
2.3412 | 1.0609 | 0.2646 | 0.9714 | 8.149 | 2.0585 | |
透明范围,μm | 0.35 → 4.5 | |||||
1064 nm处的残留吸收(PCI) | <250 ppm/cm | |||||
电光常数(@ 633 nm,1 kHz),pm。 V-1 | r13 | 10.9 | ||||
r23 | 15 | |||||
r33 | 33 | |||||
介电常数 | εeff=13 |
化学式 | RbTiOPO4 |
晶体结构 | Orthorhombic |
点群 | mm2 |
晶格参数Å | a 12.96 |
b 10.56 | |
c 6.49 | |
密度g.cm-3 | 3.6 |
电阻率(20°C,20%湿度),欧姆。厘米 | 1012 |
孔径,mm2 | 从2×2 到 9×9 |
长度,毫米 | up to 10 |
尺寸公差 | ±0.1 mm |
平整度 | <l/8 @633 nm |
表面质量 | Scratch/Dig 10/5 |
平行性 | better than 30 arc sec |
垂直性 | better than 30 arc min |
角度公差 | △q < 0.5°, △f < 0.5° |
涂层 | AR coatings |
通光孔径 | >90% central area |
传输波前失真 | less than l/8 @ 633 nm Dimension |
熔点 | ~ 1000 °C |
铁电转变温度 | ~810 °C |
莫氏硬度 | ~5 |
热膨胀系数,/°C | a1=1.01×10-5, a2=1.37×10-5, a3=-4.17×10-6 |
吸湿性 | No |
离子电导率(室温,10 kHz) | 10-8 S/cm |
- 透明范围广
- 稳定的机械和化学性能
- 高损伤阈值
- 体积小
- 不容易潮解
- 高温稳定性
- 低半波电压
- 适用于高频操作
应用:电光调制器
由于Q开关,尤其是主动Q开关,由于其稳定的脉冲能量和在高重复率下的低时间抖动,因此可以实现高重复率(≥100kHz)。有源Q开关主要包含两种常用的Q开关模式:声光(AO)Q开关和电光(EO)Q开关。AO调Q激光器具有高重复率的特性(通常可以达到200 kHz),但是由于它倾向于产生长脉冲(通常为几十到一百纳秒),因此在许多领域受到限制。与AO Q开关相比,EO Q开关可以克服AO Q开关的缺点,并由于其快速的损耗变化而获得稳定的短脉冲。但是EO Q开关需要非常高的电压驱动器。这导致难以获得高脉冲重复率。近年来,随着新型电光晶体RTP的发展,EO调Q固态激光器的重复率得到了显着提高。
具有双晶RTP电光调制器的高重复频率880 nm二极管直接泵浦电光Q开关Nd:GdVO4激光器
应用:电光Q开关https://www.laser-crylink.com/wp-content/uploads/2019/07/17-High-repetition-rate-880-nm-diode-direct-pumped-electro-optic -Q开关Nd:GdVO4-激光与双晶体RTP电光调制器.pdf
高脉冲重复频率Nd:YAG扭曲模式激光器使用RTP晶体作为电光Q开关。获得了1、5和10 kHz的稳定单纵模激光束,其线宽小于0.1 GHz。在7.5 W的入射泵浦功率和10 kHz的PRF下,单纵模激光器的最大输出功率为1.19W。相应的转换效率,单脉冲能量和脉冲峰值功率为15.8%,119μJ,和2.5千瓦
具有扭曲模式腔的RTP Q开关单纵模Nd:YAG激光器
[1] Yu Y J , Chen X Y , Wang C , et al. High repetition rate 880 nm diode-directly-pumped electro-optic Q-switched Nd:GdVO4 laser with a double-crystal RTP electro-optic modulator[J]. Optics Communications, 2013, 304:39-42. |
[2] Cong Z , Liu Z , Qin Z , et al. RTP Q-switched single-longitudinal-mode Nd:YAG laser with a twisted-mode cavity[J]. Applied Optics, 2015, 54(16):5143-6. |
[3] Albrecht H , Villeval P , Bonnin C . Study of RTP Crystal Used as Electro-Optic Modulator. 2006. |
[4] Oseledchik Y S , Pisarevsky A I , Prosvirnin A L , et al. Nonlinear optical properties of the flux grown RbTiOPO4 crystal[J]. Optical Materials, 1994, 3(4):237-242. |
[5] Duan Y , Zhu H , Ye Y , et al. Efficient RTP-based OPO intracavity pumped by an acousto-optic Q-switched Nd:YVO4 laser[J]. Optics Letters, 2014, 39(5):1314. |
[6] Ortega T A , Pask H M , Spence D J , et al. Stimulated polariton scattering in an intracavity RbTiOPO_4 crystal generating frequency-tunable THz output[J]. Optics Express, 2016, 24(10):10254. |
[7] Guillien Y , B Ménaert, JP Fève, et al. Crystal growth and refined Sellmeier equations over the complete transparency range of RbTiOPO4[J]. Optical Materials, 2003, 22(2):155-162. |
[8] Albrecht H , Bonnin C , Gromfeld Y , et al. Characterization of RbTiOPO4 crystal for electro-optic and non-linear applications[C]// European Symposium on Optics and Photonics for Defence and Security. International Society for Optics and Photonics, 2005. |
[9] L Sánchez-García, MO Ramírez, Molina P , et al. Blue SHG Enhancement by Silver Nanocubes Photochemically Prepared on a RbTiOPO4 Ferroelectric Crystal[J]. Advanced Materials, 2014, 26(37):6447-53. |
[10] Carvajal J J , Nikolov V , ,R Solé, et al. Crystallization Region, Crystal Growth, and Characterization of Rubidium Titanyl Phosphate Codoped with Niobium and Lanthanide Ions[J]. Chemistry of Materials, 2002, 14(7):3136-3142. |
[11] J, J, Carvajal, et al. Crystal Growth of RbTiOPO4:Nb: A New Nonlinear Optical Host for Rare Earth Doping[J]. Crystal Growth & Design, 2001. |
[12] Goldring S , Lebiush E , Lavi R . RTP Q-switched 2-micron Tm:YAG laser[J]. Proc Spie, 2002, 4630. |
[13] Albrecht H , Bonnin C , Gromfeld Y , et al. Characterization of RbTiOPO 4 crystal for non-linear and electro-optic applications[J]. Proceedings of SPIE – The International Society for Optical Engineering, 2006, 6100(16):385-396. |
[14] Bussiere D E , Bastia D , White S W . Crystal structure of the replication terminator protein from B. subtilis at 2.6 A[J]. Cell, 1995, 80(4):651-660. |
[15] Carvajal J J , R Solé, J Gavaldà, et al. Spectroscopic and second harmonic generation properties of a new crystal: Yb-doped RbTiOPO 4[J]. Optical Materials, 2004, 26(3):313-317. |
[16] A Y S O , A S P B , A V V O , et al. Growth of RbTiOPO 4 single crystals from phosphate systems[J]. Journal of Crystal Growth, 1992, 125( 3–4):639-643. |
[17] Hildenbrand A , Wagner F , Natoli J Y , et al. Laser damage investigation in nonlinear crystals: study of KTiOPO4 (KTP) and RbTiOPO4 (RTP) crystals[J]. Proceedings of Spie the International Society for Optical Engineering, 2008, 6998:99815. |
[18] Cugat J , Cruz A , R Solé, et al. Femtosecond-Laser Microstructuring of Ribs on Active (Yb,Nb):RTP/RTP Planar Waveguides[J]. Journal of Lightwave Technology, 2013. |
[19] Shao X D , Zhang X , Shi C , et al. Switching Dielectric Constant Near Room Temperature in a Molecular Crystal[J]. Advanced Science, 2015, 2(5):n/a-n/a. |
[20] Thomas P A , Mayo S C , Watts B E . Crystal structures of RbTiOAsO4, KTiO(P0.58,As0.42)O4, RbTiOPO4 and (Rb0.465,K0.535)TiOPO4, and analysis of pseudosymmetry in crystals of the KTiOPO4 family[J]. Acta Crystallographica, 2010, 48(4):401-407. |
[21] Carvajal J J , Ciatto G , Mateos X , et al. Broad emission band of Yb3+ in the nonlinear Nb:RbTiOPO4 crystal: origin and applications[J]. Optics Express, 2010, 18(7):7228-42. |
[22] M, A, Laruhin, et al. Dissymmetrization in X-irradiated RbTiOPO4 crystal[J]. Applied Magnetic Resonance, 1998. |
[23] Hildenbrand A , Wagner F R , Natoli J Y , et al. Nanosecond laser induced damage in RbTiOPO4:The missing influence of crystal quality[J]. Optics Express, 2009, 17(20):18263-70. |
[24] Roth M , Angert N , Tseitlin M , et al. Ferroelectric phase transition temperatures of self-flux-grown RbTiOPO 4 crystals[J]. Optical Materials, 2004, 26(4):465-470. |
[25] Zaldo C , Rico M , F Diaz. Progress in crystal growth and characterisation of rare-earth doped non-linear KTP crystals for laser applications[J]. Optical Materials, 1999, 13(1):175-180. |
[26] L. K , Cheng, and, et al. Crystal growth and characterization of KTiOPO4 isomorphs from the self-fluxes[J]. Journal of Crystal Growth, 1994, 137(1-2):107-115. |
[27] Aleksandrov V V , Velichkina T S , Voronkova V I , et al. Elastic coefficients of KTiOPO 4, RbTiOPO 4, TlTiOPO 4 crystals determined from Mandelstamm-Brillouin light scattering spectra[J]. Solid State Communications, 1989, 69(9):877-881. |
发表回复