参数
化学式 | LiNbO3 |
晶体结构 | 三方晶系 |
空间群 | R3C |
密度 | 4.64 g/cm3 |
莫氏硬度 | 5 |
光学均匀性 | ~ 5 x 10-5 / cm |
透明范围 | 420 – 5200 nm |
吸收系数 | ~ 0.1 % / cm @ 1064 nm |
1064 nm的折射率 | ne = 2.146, no = 2.220 @ 1300 nm |
ne = 2.156, no = 2.232 @ 1064 nm | |
ne = 2.203, no = 2.286 @ 632.8 nm | |
Sellmeier方程(λ,μm) | no2 = 4.9048 + 0.11768 / (λ2 – 0.04750) – 0.027169λ2 |
ne2 = 4.5820 + 0.099169 / (λ2 – 0.04443) – 0.021950λ2 | |
热膨胀系数@ 25°C | //a, 2.0 x 10-6 / K |
//c, 2.2 x 10-6 / K | |
导热系数 | ~ 5 W/m/K @ 25 °C |
热光学系数 | dno/dT = -0.874 x 10-6 / K at 1.4 µm |
dne/dT = 39.073 x 10-6 / K at 1.4 µm |
折射延迟 | Γ=лLnr22V/λd |
电光系数 | R33=32pm/V |
R31=10pm/V | |
R22=6.8 pm/V | |
光圈 | 4x4mm ~ 9x9mm |
长度 | 15~25mm |
尺寸公差 | +/-0.1mm |
倒角 | <0.5mm x 45° |
定位精度 | <5 arc min |
平行性 | <10 arc sec |
平整度 | l/8 at 632.8 nm |
波前失真 | <l/4 at 632.8 nm |
消光比 | >400:1 @ 633nm, dia 6mm beam |
工作波长范围 | 1.525-1.605μm |
消光比 | <20dB |
半波电压 | <6V |
直流偏置电压 | <8V |
输入特性阻抗 | 50Ω |
光反射 | ≤-50dB |
最大输入功率 | 20dBm |
最大输入光功率 | 10-100mW |
贮存温度 | -40-85℃ |
工作温度 | -40-70℃ |
弹性刚度系数 | c11 | c12 | c13 | c14 | c33 | c44 |
cij/(1010N/m2) | 20.3 | 5.3 | 7.5 | 0.9 | 24.5 | 6 |
弹性柔量系数 | S11 | S12 | S13 | S14 | S33 | S44 |
sij/(10-12m2/N) | 5.78 | -1.01 | -1.47 | -1.02 | 5.02 | 17 |
压电应变常数 | d11 | d15 | d22 | d31 | d33 | |
dij/(10-11C/N) | 8 | 7.4 | 2.04 | -0.086 | 1.62 | |
介电常数 | εT11/ε0 | εT11/ε0 | ||||
78 | 32 | |||||
机电耦合系数 kij(%) | k15 | k31 | ||||
68 | 50 |
NLO系数 | d33 = 34.4 pm/V |
d31 = d15 = 5.95 pm/V | |
d22 = 3.07 pm/V | |
效率NLO系数 | deff =5.7 pm/V or ~14.6 x d36 (KDP) for frequency doubling 1300 nm; |
deff =5.3 pm/V or ~13.6 x d36 (KDP) for OPO pumped at 1064 nm; | |
deff =17.6 pm/V or ~45 x d36 (KDP) for quasi-phase-matched structure. | |
电光系数 | gT33 = 32 pm/V, gS33 = 31 pm/V, |
gT31 =10 pm/V, gS31=8.6 pm/V, | |
gT22 = 6.8 pm/V, gS22= 3.4 pm/V, | |
半波电压,直流 | 3.03 KV |
电场|| z,光^ z: | |
电场|| x或y,光|| z: | 4.02 KV |
损伤阈值 | 100 MW/cm2 (10 ns, 1064nm) |
透射波前畸变 | 优于 l/4 @ 633nm |
尺寸公差 | (W±0.1mm) x (H±0.1mm) x (L±0.2mm) |
通光孔径 | 中心直径超过90% |
平整度 | l/8 @ 633nm |
表面质量 | 20 /10 刮痕/凹陷 |
平行性 | 优于20弧秒 |
垂直性 | 5 arc min |
角度公差 | Dq < 0.5o, Df < 0.5o |
增透涂层 | 在两个表面上都在1064/532 nm处形成双波段增透膜,每个表面的R <0.2%在1064 nm处,R <0.5%在0.532 nm处 |
案例
特点
应用
参考文献
新闻
案例
铌酸锂晶体案例(一)—— 用于2790nm电光调制
规格:45*20*11mm
镀膜:AR/AR@2.79um,透过率≥99%;高阈值硬膜
特点
- 透明范围广
- 高电光效率
- 稳定的机械和化学性能
- 低吸收损失
- 低损伤阈值
- 体积小
- 不容易潮解
- 高温稳定性
- 大电光系数
- 容易长成大晶体
应用
参考文献
[1] Akbar G , Reza A . Pressure sensor based on polarization rotation in z-cut LiNbO3 optical waveguide[J]. Sensors & Actuators A Physical, 2018:S0924424718306575-. |
[2] Hichem H , Djamel B . A comparative study for two LiNbO3 cuts (Y-Z and Y-X) in detecting bulk acoustic microwaves using Probabilistic Neural Network[J]. Engineering ence & Technology An International Journal, 2018:S2215098616311053. |
[3] The electromechanical features of LiNbO3 crystal for potential high temperature piezoelectric applications[J]. Journal of Materiomics, 2018. |
[4] Wang H , Zhang Y , D Xiang, et al. Growth and mechanical properties of near-stoichiometric LiNbO 3 crystal[J]. Optik, 2018, 164:385-389. |
[5] Lavrov S D , Kokhanchik L S , Gainutdinov R V , et al. Nonlinear-optical characterization of planar domain patterns written in LiNbO3 by electron-beam irradiation[J]. Optical Materials, 2018, 75:325–330. |
[6] Bettella G , Zamboni R , Pozza G , et al. LiNbO3 integrated system for opto-microfluidic sensing[J]. Sensors & Actuators B: Chemical, 2019. |
[7] Characterization of Mn-doped electrospun LiNbO3 nanofibers by Raman spectroscopy – ScienceDirect[J]. Materials Characterization, 2017, 127:209-213. |
[8] Gamze A , Duyar C ? . LiNbO 3 thin films for all-solid-state electrochromic devices[J]. Optical Materials, 2018, 82:160-167. |
[9] Sanna S , Schmidt W G . GaN/LiNbO 3 (0 0 0 1) interface formation calculated from first-principles[J]. Applied Surface Science, 2010, 256(19):5740-5743. |
[10] A M G , B A L , B D K , et al. Incipient plasticity and surface damage in LiTaO3 and LiNbO3 single crystals – ScienceDirect[J]. Materials & Design, 2018, 153:221-231. |
[11] Mingkai, Hu, Franklin, et al. Design, fabrication and characterization of SAW devices on LiNbO3 bulk and ZnO thin film substrates – ScienceDirect[J]. Solid-State Electronics, 2018, 150:28-34. |
[12] X Zhang, Yuan J , Xia P , et al. Controllable Synthesis of LiNbO3 Micro-octahedrons and Micro-cubes via a Molten-Salt Process[J]. Ceramics International, 2018, 44(18):22874-22879. |
[13] Presti D A , Guarepi V , Videla F , et al. Intensity modulator fabricated in LiNbO3 by femtosecond laser writing[J]. Optics and Lasers in Engineering, 2018. |
[14] Zhang B , Xiong B , Li Z , et al. Mode tailoring of laser written waveguides in LiNbO3 crystals by multi-scan of femtosecond laser pulses[J]. Optical Materials, 2018, 86:571-575. |
[15] Senatulin, B, R, et al. XPS study of Li/Nb ratio in LiNbO3 crystals. Effect of polarity and mechanical processing on LiNbO3 surface chemical composition[J]. Applied Surface Science A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis & Behaviour of Materials, 2016. |
[16] Ega?A A , V Tormo-Márquez, Torrente A , et al. Swift heavy ion irradiation induces enhancement in electrical conductivity of LiTaO 3 and LiNbO 3 crystals[J]. Nuclear Instruments and Methods in Physics Research Section B Beam Interactions with Materials and Atoms, 2017:S0168583X17309679. |
[17] Lj A , Yw A , Kt B , et al. In situ imaging ellipsometer using a LiNbO 3 electrooptic crystal[J]. Thin Solid Films, 2014, 571:532-537. |
新闻
发表回复