参数
点组 | C3v-3m |
折射率在632.8nm | n0=2.176 |
ne=2.186 | |
透明范围 | 0.4-5.0μm |
取向 | X,Z,36°Y,42°Y,128°Y |
熔点 | 1650℃ |
密度 | 7.45g/cm3 |
莫氏硬度 | 5.5 |
热膨胀系数 | aa=16×10-6/K, ac=4×10-6/K |
比热 | 0.06J/(kg•°C) |
晶胞参数 | a=5.154Å,c=13.781Å |
居里温度 | 605℃ |
弹性刚度系数 | CE11=2.33(×1011N/m2) |
CE33=2.77(×1011N/m2) | |
电光系数@0.63μm | γS13=7×10-12m/V |
γS33=30.3×10-12m/V | |
热容量(Cp) | 100 J / k.mol |
在632.8 nm处的电光系数r(10-12 mV-1)
rT13 | 8.4 | rS13 | 7 |
rT22 | – | rS22 | 1 |
rT33 | 30.5 | rS33 | 30.3 |
rT51 | – | rS51 | 20 |
在1-06 μ m处的非线性光学系数(*d31=d15)
d22 / l d36KDP l | 4.4 |
d31 / l d36KDP l | -2.7 |
d33 / l d36KDP l | -4.1 |
在632.8 nm处的反射系数
no | 2.1787 |
ne | 2.1821 |
no: TE mode ne: TM mode |
表面声波特性
描述 | 传播 | 设计 | 表面波速度(m/s) | 耦合系数k㎡% | 群延迟时间温度系数(ppm/摄氏度) |
36 ° Y – 切向 | X – 轴 | SSBW | 4160 | 5 | 28 ~ 32 |
42° Y – 切向 | X – 轴 | SSBW | 4022 | 7.6 | 40 |
X – 切向 | 112.2 Y方向 | SAW | 3290 | 0.75 | 18 |
SAW =表面声波 L,SAW =漏声表面波; |
压电耦合因数及频率常数
平面方向 | 波型 | 耦合因数 | 共振频率常数 (MHz-mm) |
X | S | 0.44 | 1.906 |
Z | E | 0.19 | 3.04 |
36° Y – 切向 | QE | – | – |
163° Y – 切向 | QS | – | – |
E = extensional S = shear QE = quasi – extensional QS = quasi – shear |
弹性刚度系数 | c11 | c12 | c13 | c14 | c33 | c44 |
cij /(1010N/m2) | 22.8 | 3.1 | 7.4 | -1.2 | 27.1 | 9.6 |
压电应变常数 | d15 | d22 | d31 | d33 | ||
dij /(10-11C / N) | 2.6 | 0.85 | -0.3 | 0.92 | ||
介电常数 | εT11/ε0 | εT11/ε0 | ||||
53 | 44 | |||||
机电耦合系数kij(%) | k15 | k31 | ||||
50 | 50 |
特点
应用
参考文献
新闻
特点
- 电光系数大
- 不容易潮解
- 高敏感度
- 透明范围广
- 高光学损伤阈值
- 稳定的化学和物理性质
应用
电光偏转器
- 光存储
- 高速全息相机
- 暂态记录
样品描述
参考文献
[1] Ismangil A , Irmansyah, Irzaman. The Diffusion Coefficient of Lithium Tantalite (LiTaO 3 ) with Temperature Variations on LAPAN-IPB Satellite Infra-red Sensor ☆[J]. Procedia Environmental Sciences, 2016, 33:668-673. |
[2] Steinberg I S , Kirpichnikov A V , Atuchin V V . Two-photon absorption in undoped LiTaO3 crystals[J]. Optical Materials, 2018, 78:253-258. |
[3] Zhao, Lina, Zeng, et al. Femtosecond supercontinuum generation and Cerenkov conical emission in periodically poled LiTaO3[J]. Optik: Zeitschrift fur Licht- und Elektronenoptik: = Journal for Light-and Electronoptic, 2018, 156:333-337. |
[4] [ Gaojian Qiu, Ye H , Wang X , et al. Intense piezoluminescence in LiTaO3 phosphors doped with Pr3+ ions[J]. Ceramics International, 2019. |
[5] Zhang D L , Zhang Q , Wong W H , et al. Er3+ diffusion in LiTaO3 crystal[J]. Applied Surface Science, 2015, 357(DEC.1PT.A):1097-1103. |
[6] Misbakhusshudur M , Ismangil A , Aminullah, et al. Phasor Diagrams of Thin Film of LiTaO3 as Applied Infrared Sensors on Satellite of LAPAN-IPB[J]. Procedia Environmental Sciences, 2016, 33:615-619. |
[7] Liang W F , Lu Y , Wu J , et al. Application of LiTaO3 pyroelectric crystal for pulsed neutron detection[J]. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment, 2016, 827(aug.11):161-164. |
[8] Ji J , Yang C , F Zhang, et al. A high sensitive SH-SAW biosensor based 36° Y-X black LiTaO3 for label-free detection of Pseudomonas Aeruginosa[J]. Sensors and Actuators B Chemical, 2018, 281. |
[9] Ma C , Lu F , Jin L , et al. Surface modification of single crystal LiTaO3 by H and He implantation[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2017. |
[10] Hanamoto K , Kataoka T , Yamaoka K . Pressure dependence of X-rays produced by an LiTaO 3 single crystal over a wide range of pressure[J]. Applied Radiation and Isotopes, 2018, 135:40-42. |
[11] Ns A , Yk A , Rksa B . LiTaO 3 based metamaterial perfect absorber for terahertz spectrum[J]. Superlattices and Microstructures, 2017, 111:754-759. |
[12] Evolution of optical absorption and strain in LiTaO3 crystal implanted by energetic He-ion[J]. Nuclear Inst & Methods in Physics Research B, 2015, 354(jul.1):301-304. |
[13] Gruber M , Konetschnik R , Popov M , et al. Atomistic origins of the differences in anisotropic fracture behaviour of LiTaO 3 and LiNbO 3 single crystals[J]. Acta Materialia, 2018:373-380. |
[14] Wu X L , Zhang M S , Yan F , et al. Localized vibration in proton-exchanged LiNbO3 and LiTaO3 crystals[J]. Solid State Communications, 1995, 93(2):131–134. |
[15] Ballandras S , Courjon E , Baron T , et al. LiTaO3/Silicon Composite Wafers for the Fabrication of Low Loss Low TCF High Coupling Resonators for Filter Applications[J]. Physics Procedia, 2015, 70:1007-1011. |
[16] Ma, Yujie, Lu, et al. Study of the effect of H implantation and annealing on LiTaO3 surface blistering[J]. Nuclear Instruments and Methods in Physics Research, Section B. Beam Interactions with Materials and Atoms, 2015. |
[17] Hang W , Zhou L , Zhang K , et al. Study on grinding of LiTaO3 wafer using effective cooling and electrolyte solution[J]. Precision Engineering, 2016, 44:62-69. |
[18] Liu G , He R , Akhmadaliev S , et al. Optical waveguides in LiTaO3 crystals fabricated by swift C5+ ion irradiation[J]. Nuclear Instruments & Methods in Physics Research, 2014, 325(apr.15):43-46. |
[19] Zhang Y , Yu Z , Jia D , et al. Non-180° domains formation mechanism in LiTaO3 grains of an Al2O3/LiTaO3 composite[J]. Ceramics International, 2009, 35(3):949-952. |
[20] Yang T , Liu Y G , Zhang L , et al. Powder synthesis and properties of LiTaO3 ceramics[J]. Advanced Powder Technology, 2014. |
[21] Katsumi, Hanamoto, Takahiro, et al. Pressure dependence of X-rays produced by an LiTaO3 single crystal at the pressures of 1–20 Pa[J]. Applied Radiation & Isotopes, 2016. |
[22] Pang L L , Wang Z G , Sun J R , et al. The energy loss effects on the absorption edge of LiTaO3 irradiated by energetic heavy ions[J]. Nuclear Inst & Methods in Physics Research B, 2013, 307(Complete):526-530. |
新闻
发表回复