Er3+/Yb3+共掺杂磷酸盐玻璃–作为LD泵浦的1540nm眼睛安全辐射源,可以发射直接在激光测距仪和电信通信中使用的1540nm眼睛安全激光辐射
1540um,Er3+/Yb3+共掺杂磷酸盐玻璃激光器作为一种对人眼安全的波长激光器,由于其紧凑和低成本(例如激光产生和信号放大)而备受关注,因为1540nm的波长正好位于眼睛安全和光纤通信窗口的位置。1540nm激光器已用于测距仪,雷达,目标识别。Er3+/Yb3+共掺杂磷酸盐玻璃与无源被动Q开关钴尖晶石共同获得1540nm脉冲固态激光器。
Er3+发射跃迁发生在与4I13/2→4I15/2相对应的该波长范围内。但是,Er3+吸收本身太弱而不能直接泵浦,因此需要能量转移。最有效的是在2F7/2→2F5/2跃迁吸收下的Yb3+离子,然后是能量转移到 4I11/2 Er3+能级和快速的非辐射跃迁到Er3+ 4I13/2能级,从而发出预期的荧光。Er,Yb:辐射输出为1540 nm的玻璃激光器不需要添加其他组件。
参数
EAT14 | WM4 | |
受激发射的横截面(10-20cm2) | 0.8 | 0.75 |
荧光寿命(毫秒)* | 7.7-8.0 | 7.7-8.2 |
中心激光波长(nm) | 1535 | 1535 |
EAT14 | WM4 | |
折射率(1535nm) | 1.524 | 1.528 |
折射率(d 589.3nm) | 1.532 | 1.536 |
阿贝值 | 66 | 66 |
dn / dT(10-6 /℃)(20〜100℃) | -1.72 | -3 |
EAT14 | WM4 | |
转变温度 (℃) | 556 | 530 |
软化温度 (℃) | 605 | 573 |
线性热膨胀系数(10-7 / K)(20〜100℃) | 87 | 82 |
线性热膨胀系数(10-7 / K)(100〜300℃) | 95 | 96 |
光程长度的热系数(10-6 / K)(20〜100℃) | 2.9 | 1.4 |
导热系数(25℃)(W / mK) | 0.7 | 0.7 |
EAT14 | WM4 | |
密度g / cm3 | 3.06 | 2.83 |
化学耐久性(在100℃蒸馏水中的失重率)(μg/ hr.cm2) | 52 | 82 |
EAT-14吸收曲线 | EAT-14发射曲线 |
方向公差 | < 0.5° |
厚度/直径公差 | ±0.05 mm |
表面平整度 | <λ/8@632 nm |
波前失真 | <λ/4@632 nm |
表面质量 | 5-Oct |
平行性 | 10〞 |
垂直性 | 15ˊ |
通光孔径 | >90% |
倒角 | <0.1×45° |
最大尺寸 | dia (3-12.7)×(3-150)mm2 |
案例
特点
应用
参考文献
新闻
案例
铒玻璃 (Er, Yb: glass) 案例(一)用于1535nm激光器
尺寸:Ø2*7 (+/-0.1) mm;
掺杂:Yb 20%;Er 0.5%;
镀膜 S1:HT (T>95%)@940+/-10 nm + HR(R>99.5%)@1535 nm,AOIº =0;
涂层 S2:AR (R<0.25%) @1535 nm
铒玻璃 (Er, Yb: glass) 案例(二)用于1540nm激光器
A、B:AR@1540 R<0.5%;
C、D:AR@940 R<0.5%;
E、F:RE R@940>95%;
LIDT(用于涂层表面和材料):0.8×10*5 J/m2(脉冲持续时间 10-40 纳秒)
铒玻璃 (Er, Yb: glass) 案例(三)
规格:φ6×50 mm;
Er掺杂浓度: 0.52%;
Yb掺杂浓度: 22.0%
特点
- 吸收带宽
- 荧光寿命长
- 光学质量高
- 眼睛安全
- 斜率效率高
应用
参考文献
[1] B Y Z A , A M L , A J L , et al. Optical properties of Er 3+ /Yb 3+ co-doped phosphate glass system for NIR lasers and fiber amplifiers[J]. Ceramics International, 2018, 44( 18):22467-22472. |
[2] Langar A , Bouzidi C , Elhouichet H , et al. Er–Yb codoped phosphate glasses with improved gain characteristics for an efficient 1.55μm broadband optical amplifiers[J]. Journal of Luminescence, 2014, 148:249-255. |
[3] A C B , A T M , B S R D , et al. Sensitizing effect of Yb 3+ ions on photoluminescence properties of Er 3+ ions in lead phosphate glasses: Optical fiber amplifiers[J]. Optical Materials, 2018, 86:256-269. |
[4] Ryabtsev G I , Bezyazychnaya T V , Parastchuk V V , et al. Spectral and temporal properties of diode-pumped Er, Yb: glass laser[J]. Optics Communications, 2005, 252(4-6):301-306. |
[5] Francini R , Giovenale F , Grassano U M , et al. Spectroscopy of Er and Er–Yb-doped phosphate glasses[J]. Optical Materials, 2000, 13(4):417-425. |
[6] Sendova M , JA Jiménez, Honaman C . Rare earth-dependent trend of the glass transition activation energy of doped phosphate glasses: Calorimetric analysis[J]. Journal of Non-Crystalline Solids, 2016, 450:18-22. |
[7] Chen C , He R , Tan Y , et al. Optical ridge waveguides in Er3+/Yb3+ co-doped phosphate glass produced by ion irradiation combined with femtosecond laser ablation for guided-wave green and red upconversion emissions[J]. Optical Materials, 2016. |
[8] Balaji S , D Ghosh, Biswas K , et al. Insights into Er 3+ Yb 3+ energy transfer dynamics upon infrared ~1550nm excitation in a low phonon fluoro-tellurite glass system[J]. Journal of Luminescence, 2017, 187:441-448. |
[9] Feng S , Fei L , Li S , et al. The fractional thermal factor in LD-pumped Yb3+/Er3+ codoped phosphate glass. IEEE, 2009. |
[10] Dan G , Mihailov S J , Walker R B , et al. Bragg Gratings Made With a Femtosecond Laser in Heavily Doped Er–Yb Phosphate Glass Fiber[J]. IEEE Photonics Technology Letters, 2007, 19(12):943-945. |
[11] Zhu M , Tongzhao G U . Spectroscopic properties of Er3+/Yb3+ co-doped tantalum-niobium phosphate glasses for optical waveguide laser and amplifier[C]// International Conference on Microwave & Millimeter Wave Technology. IEEE Xplore, 2004. |
[12] Danger T , Huber G , DeNker B I , et al. Diode-pumped cw laser around 1.54 m using Yb, Er-doped silico-boro-phosphate glass[C]// Conference on Lasers & Electro-optics. IEEE, 1998. |
[13] S Jiang, SJ Hamlin, JD Myers,等. High-average-power 1.54-μm Er3+:Yb3+-doped phosphate glass laser. 1996. |
[14] Osellame R , Valle G D , Chiodo N , et al. Mode-locked and single-longitudinal-mode waveguide lasers fabricated by femtosecond laser pulses in Er:Yb-doped phosphate glass. IEEE, 2007. |
[15] Valles J A , Rebolledo M A , J Cortés. Full characterization of packaged Er-Yb-codoped phosphate glass waveguides[J]. IEEE Journal of Quantum Electronics, 2006, 42(2):152-159. |
[16] Aseev V A , Ulyashenko A M , Nikonorov N V , et al. Comparison of highly doped Ytterbium-erbium phosphate and silicate glasses for microchip lasers[C]// International Conference on Advanced Optoelectronics & Lasers. IEEE, 2005. |
[17] Qiu T , Li L , Temyanko V , et al. Generation of high power 1535nm light from a short cavity cladding pumped Er:Yb phosphate fiber laser[M]. 2004. |
[18] Buchenkov V A , Krylov A A , Mak A A . 12 mJ 10 Hz Diode Pumped A/O Q-switched Yb:Er:Glass Laser[C]// 2018:48-48. |
[19] Kalashnikov V L , Shcherbitsky V G , Kuleshov N V , et al. Optimization of passively Q-switched Er:glass laser[C]// Lasers and Electro-Optics, 2002. CLEO ’02. Technical Digest. Summaries of Papers Presented at the. IEEE, 2002. |
[20] Simondi-Teisseire B , Viana B , Lejus A M , et al. Room-temperature CW laser operation at ~1.55 μm (eye-safe range) of Yb:Er and Yb:Er:Ce:Ca2Al2SiO7 crystals[J]. IEEE Journal of Quantum Electronics, 1996, 32(11):2004-2009. |
[21] Wu R , Hamlin S J , Myers J D , et al. Infrared image studies of diode-pumped Yb3+, Er3+:glass[C]// Conference on Lasers and Electro-Optics. 1996. |
[22] Tan F , Yu F , Wang L , et al. Enhancement in Laser Performance of Er3+/Yb3+ Co-doped Phosphate Glass Materials[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed. 2015, 30(3):442-446. |
[23] Sattar A , Azzouz I M , Shafik M S , et al. Effect of sensitizers on the optical properties of Er3+ions in erbium glass lasers[C]// Workshop on Photonics & Its Application at Egyptian Engineering Faculties & Institutes. IEEE, 2002. |
[24] Kervevan L , Gilles H , Girard S , et al. Self-mixing laser Doppler velocimetry with a dual-polarization Yb:Er glass laser[J]. Applied Physics B, 2007, 86(1):169-176. |
[25] Karlsson G , Laurell F , Tellefsen J , et al. Development and characterization of Yb-Er laser glass for high average power laser diode pumping[J]. Applied Physics B, 2002, 75(1):41-46. |
[26] Vitkin V , Krylov A , Polishchuk A , et al. 40 Hz 1.3 mJ Q-switched Yb:Er:glass Laser[C]// 2018:50-50. |
[27] Bhardwaj A , Agrawal L , Pal S , et al. Optimization of passively Q -switched Er:Yb:Cr:phosphate glass laser: theoretical analysis and experimental results[J]. Applied Physics B, 2007, 86(2):293-301. |
[28] Kalashnikov V L , Shcherbitsky V G , Kuleshov N V , et al. Pulse energy optimization of passively Q-switched flash-lamp pumped Er:glass laser[J]. Applied Physics B, 2002, 75(1):35-39. |
[29] Summaries of papers presented at the Conference on Lasers and Electro-optics. 1999. |
[30] Third Workshop on Photonics and its Application at Egyptian Engineering Faculties and Institutes (Cat. No.02EX509)[C]// Workshop on Photonics & Its Application at Egyptian Engineering Faculties & Institutes. IEEE, 2002. |
新闻
发表回复