参数
材料 | Yb:YAG |
Yb浓度公差(atm%) | 0.5, 1, 2, 3, 5, 7.5 , 10, 15, 20, 25% |
取向 | [001] or [110] or [111] <±0.5° |
平行性 | 10〞 |
垂直性 | 5ˊ |
表面质量 | 10-5(MIL-O-13830A) |
波前失真 | λ/4@632nm |
表面平整度 | λ/8@632nm |
通光孔径 | >95% |
倒角 | <0.1×45° |
厚度/直径公差 | ±0.05 mm |
最大尺寸 | dia 50×100 mm |
涂层 | AR/AR@940+1030;HR@940+AR1030 |
晶体结构 | 立方 – la3d |
晶格常数 | 12.01 Å |
密度 | 4.56±0.04 g/cm3 |
熔点 | 1970 °C |
导热系数/(W·m-1·K-1 @ 25°C) | λ/4@632nm |
比热容/(J·g-1·K-1) | 0.59 |
热光学系数(dn / dT) | 7.3×10-6/℃ |
热膨胀率/(10-6·K-1 @ 25°C) | 8.2 [100] 7.7 [110] 7.8 [111] |
硬度(莫氏) | 8.5 |
杨氏模量/ GPa | 317 |
剪切模量/ Gpa | 54.66 |
消光比 | 25 dB |
拉伸强度/ Gpa | 0.13-0.26 |
溶解度 | 水:不溶; 普通酸:微溶 |
泊松比 | 0.25 |
激光跃迁 | 2F5/2→2F7/2 |
激光波长 | 1030 nm |
光子能量 | 1.93×10-19J(@1030 nm) |
泵吸收带宽 | 8 nm |
损耗系数 | 0.003 cm-1 |
二极管泵浦带 | 940 nm or 970 nm |
放射截面 | 2.0×10-20 cm2 |
荧光寿命 | 1.2 ms |
发射线宽 | 9 nm |
折射率@ 1.030μm | 1.82 |
热光系数 | 9× 10-6/℃ |
案例
特点
应用
参考文献
新闻
案例
Yb:YAG晶体用于1030nm激光器
规格:3*1*12mm, 3*1*15mm,3*1*10mm,3*1*12mm;
镀膜:AR/AR@1030nm±20nm,R<0.2%,AR/AR@940nm±10nm.R<0.5%;
Yb:YAG晶体案例(二)用于1030nm激光器
规格:5*5*1 mm;
厚度/直径公差±0.10 mm
Yb:YAG晶体案例(三)
规格: 2×2×10 mm, 2×2×12 mm
镀膜:
S1: AR@1030+940 nm
S2: AR@1030+940 nm
Yb:YAG晶体案例(四)– Ø10*10mm
规格: Ø10*10mm
镀膜:
侧面圆柱面区域镀金属
特点
- 良好的光学质量
- 宽吸收带
- 低量子缺陷
- 高斜率效率
- 工作温度低
- 线性极化发射和单模
- 简单的能级结构
应用
材料加工
- 1030nm激光
- 二极管泵浦
- 人性化牙科治疗领域
- Yb:用于光纤放大器的YAG放大器模块
- 材料微加工
- 全息,干涉,光存储等领域
- YAG激光打标机
- 激光切割和焊接
- 多光子显微镜
- 超短脉冲研究
- 激光雷达和光学制冷
参考文献
[1] Agnesi A , L Carrà, Pirzio F , et al. Multiwatt compact ceramic Yb:YAG passively Q-switched laser[J]. Optics Communications, 2014, 315:208–212. |
[2] Aubry N , Sangla D , Mancini C , et al. Characterizations of 400 µm and 1 mm diameter Yb:YAG single-crystal fibers grown by the micro-pulling-down method for laser application[J]. Journal of Crystal Growth, 2009, 311(23–24):4805-4811. |
[3] Xu X , Zhao Z , Zhao G , et al. Comparison of Yb:YAG crystals grown by CZ and TGT method[J]. Journal of Crystal Growth, 2003, 257(3/4):297-300. |
[4] Yang P , Deng P , Yin Z . Concentration quenching in Yb:YAG[J]. Journal of Luminescence, 2002, 97(1):51-54. |
[5] Xu X , Zhao Z , Xu J , et al. Distribution of ytterbium in Yb:YAG crystals and lattice parameters of the crystals[J]. Journal of Crystal Growth, 2003, 255(3):338-341. |
[6] Efficient tunable Yb:YAG ceramic laser[J]. Optics Communications, 2008, 281(17):4411-4414. |
[7] Chu H , Zhao S , Yang K , et al. Experimental and theoretical study of passively Q-switched Yb:YAG laser with GaAs saturable absorber near 1050 nm[J]. Optics & Laser Technology, 2014, 56:398-403. |
[8] Luo D , Jian Z , Xu C , et al. Fabrication and laser properties of transparent Yb:YAG ceramics[J]. Optical Materials, 2012, 34(6):936-9396. |
[9] X Chen, Wu Y , Wei N , et al. Fabrication, photoluminescence and terahertz absorption properties of Yb:YAG transparent ceramics with various Yb dopant concentrations[J]. Optical Materials, 2018, 85:106-112. |
[10] Dong Y , Xu J , Zhou G , et al. Gamma-ray induced color centers in Yb:YAG crystals grown by Czochralski method[J]. Solid State Communications, 2007, 141(3):105-108. |
[11] Zhu M , Qi H , Pan M , et al. Growth and luminescent properties of Yb:YAG and Ca co-doped Yb:YAG ultrafast scintillation crystals[J]. Journal of Crystal Growth, 2018:51-55. |
[12] Xu X , Zhao Z , Song P X , et al. Growth of high-quality single crystal of 50 at.% Yb:YAG and its spectral properties[J]. Journal of Alloys & Compounds, 2004, 364(1-2):311-314. |
[13] Zhao G , Si J , Xu X , et al. Growth of large-sized Yb:YAG single crystals by temperature gradient technique[J]. Journal of Crystal Growth, 2003, 252(1/3):355-359. |
[14] Fujioka K , Mochida T , Fujimoto Y , et al. Heat treatment of transparent Yb:YAG and YAG ceramics and its influence on laser performance[J]. Optical Materials, 2018, 79:353-357. |
[15] Feng, Yang, Zhi, et al. Hybrid high energy femtosecond laser system based on Yb:YAG single crystal fiber amplifier[J]. Optik: Zeitschrift fur Licht- und Elektronenoptik: = Journal for Light-and Electronoptic, 2018, 156:155-160. |
[16] Dong J , Xu G , Jian M , et al. Investigation of continuous-wave and Q-switched microchip laser characteristics of Yb:YAG ceramics and crystals[J]. Optical Materials, 2012, 34(6):959-964. |
[17] Lin H Y , Jin G , Ning D Y , et al. LD end-pumped intracavity frequency doubled Yb:YAG laser[J]. Optics Communications, 2008, 281(24):6065–6067. |
[18] A Y C , A J L , B S A , et al. Optical ridge waveguides in Yb:YAG laser crystal produced by combination of swift carbon ion irradiation and femtosecond laser ablation[J]. Optics & Laser Technology, 2015, 72(6):100-103. |
[19] Ren Y , Dong J . Passively Q-switched microchip lasers based on Yb:YAG/Cr4+:YAG composite crystal[J]. Optics Communications, 2014, 312:163-167. |
[20] Fei T , Huang J , Wang G , et al. Photoluminescence and laser behavior of Yb:YAG ceramic[J]. Optical Materials, 2012, 34(5):757–760. |
[21] Arun K S , Senthilselvan J . Photoluminescence and thermoluminescence investigations of Yb:YAG nanoparticles by dual-surfactant functionalization and microwave calcination method[J]. Materials Chemistry & Physics, 2018:S0254058418305522-. |
[22] Zheng S , Li J , Yu C , et al. Preparation and characterizations of Yb:YAG-derived silica fibers drawn by on-line feeding molten core approach[J]. Ceramics International, 2017, 43(7):5837-5841. |
[23] Wei S , Junji Z . Preparation and properties of Yb:YAG and Nd:YAG nanocrystals[J]. Rare Metal Materials and Engineering, 2017, 46(3):591-595. |
[24] Xu X , Zhao Z , Wang H , et al. Spectroscopic and thermal properties of Cr,Yb:YAG crystal[J]. Journal of Crystal Growth, 2004, 262(1-4):317-321. |
[25] Peng C H , Liu H T , Wu K T , et al. Structural properties of host laser single crystal Yb:YAG[J]. Optics Communications, 2011, 284(21):5164-5166. |
[26] Chen X , Lu T , Wei N , et al. Systematic optimization of ball milling for highly transparent Yb:YAG ceramic using co-precipitated raw powders[J]. Journal of Alloys & Compounds, 2015. |
[27] Qiu H , Yang P , Dong J , et al. The influence of Yb concentration on laser crystal Yb:YAG[J]. Materials Letters, 2002, 55(1):1-7. |
[28] Chen X , Wu Y , Wei N , et al. The roles of cation additives on the color center and optical properties of Yb:YAG transparent ceramic[J]. Journal of the European Ceramic Society, 2017:S0955221917308063. |
[29] Jingliang, Huang, Yisheng, et al. Two novel Yb:YAG-based garnet solid solutions with broader spectral bandwidth[J]. Journal of Luminescence: An Interdisciplinary Journal of Research on Excited State Processes in Condensed Matter, 2017, 181:179-183. |
[30] Wang G , D Chen, Ying C , et al. Yb:YAG enhanced Cr,Yb:YAG self-Q-switched microchip laser under QCW laser-diode pumping[J]. Optics & Laser Technology, 2015, 68:136-140. |
新闻
Yb:YAG晶体的生长及检验 (7.5%, 3英寸) — 2020/12/21 – 南京光宝光电科技有限公司
发表回复