Yb3+:KGd(WO4)2(Yb:KGW)是最有前途的激光活性材料之一。Yb:KGW晶体有望取代Nd:YAG晶体和Yb:YAG晶体应用于大功率二极管泵浦激光系统。Yb:KGW在高功率、短脉冲飞秒激光及其广泛应用方面也具有巨大的潜力。
Yb3:KGW具有大的吸收系数,低的量子缺陷,高的吸收和发射截面
Yb离子简单的二能级电子结构避免了上转换、激发态吸收和浓度猝灭等非期望的损耗过程。与常用的Nd:YAG晶体相比,Yb:KGW晶体具有更大的吸收带宽、3-4倍的发射寿命、更高的存储容量、更低的量子缺陷,更适合于二极管泵浦。斯托克斯位移越小,加热越小,激光效率越高。与Yb:YAG和Yb:YCOB等掺Yb激光晶体相比,Yb:KGW具有更高的吸收截面(13-17倍)、更低的量子缺陷(~4%)、比Yb:YCOB高9倍的发射截面和比Yb:YAG宽的发射带、高的非线性折射系数和斜率效率最高(87%)。
参数
化学式 | Yb3+:KGd(WO4)2 |
晶体结构 | 单斜双钨酸盐 |
密度 | 7.27 g/cm3 |
传输范围 | 0.35-5.5 μm |
莫氏硬度 | 4 to 5 |
1060 nm的折射率 | ng = 2.037, np = 1.986, nm=2.033 |
导热系数 | Ka=2.6 W/mK, Kb=3.8 W/mK, Kc=3.4 W/mK |
热光学系数@ 1064 nm | dnp/dT=-15.7 * 10-6 K-1 |
dnm/dT=-11.8 * 10-6 K-1 | |
dng/dT=-17.3 * 10-6 K-1 | |
热膨胀 | αa=4X10-6 /°C |
αb=3.6X10-6 /°C | |
αc=8.5X10-6 /°C | |
熔点温度 | 1075 °C |
吸收截面 | 1.2X10-19 cm2 |
受激发射横截面(E || a) | 2.6X10-20 cm2 |
激光波长 | 1023-1060 nm |
激光阈值 | 35 mW |
Yb3 +的2F5/2歧管在77 K时的纯能级(cm-1) | 10682, 10471, 10188 |
在77K时,Yb3 +的2F7/2流形的斯塔克能级(以cm-1为单位) | 535, 385, 163, 0 |
光学损伤阈值,GW / cm2 | 20 |
吸收峰波长,lpump,[nm] | 981.2 |
吸收线宽,Dlpump,[nm] | 3.7 |
峰吸收横截面,冒泡,[cm2] | 1.2×10-19 |
峰值吸收系数,[cm-1] | 26 |
发射波长,lse,[nm] | 1023 |
发射线宽,Dlse,[nm] | 20 |
峰值发射截面,sse,[cm2] | 2.8×10-20 |
量子效应,lpump / lse,[nm] | 0.959 |
荧光寿命,tem [ms] | 0.6 |
- 吸收线宽度宽,无需严格的温度控制即可获得相位匹配的LD泵浦源的泵浦波长;
- 量子缺陷低,泵浦波长非常接近激光输出波长,导致固有的激光斜率效率高,理论上量子效率可达90%左右;
- 由于泵浦的能级接近激光的上限,因此没有辐射弛豫的材料中的热负荷很低,仅是掺钕钕激光材料的热负荷的三分之一;
- 无激发态吸收和上转换,光转换效率高;
- 荧光寿命长,是相同的掺钕激光材料的三倍以上,有利于能量存储;
1064纳米
飞秒Yb:KGW激光在非线性显微镜中的应用
基于Yb离子的飞秒激光器工作在1000 nm左右,特别适合于具有高分辨率多光子激发荧光以及三次和二次谐波显微镜的生物成像。它们是在800 nm波长范围内发射的常用钛宝石激光器的良好替代品。由于生物组织中较低的散射和较高的穿透深度,因此需要较长的激发波长。另外,自发荧光和漂白也大大减少。此外,所产生的三次谐波和二次谐波都落在可见光范围内(而不是紫外线),从而提高了吞吐量并简化了检测方案。另一方面,掺铬镁橄榄石激光器的波长在1200-1300nm范围内具有明显的吸水率。在较高的激发功率下,可能导致生物组织的光损伤。而且,与通常由昂贵的固态激光器或光纤激光器泵浦的钛宝石激光器和掺铬镁橄榄石激光器相比,掺Yb离子的激光增益介质的直接二极管泵浦大大降低了系统成本。
二极管泵浦大功率扩展腔飞秒Yb:KGW激光器:从非线性显微镜的开发到应用
Yb:KGW振荡器
扩展腔振荡器通过降低重复频率(通常低于30-40 MHz)提供了一种直接控制峰值功率的方法,但是非线性影响的增加通常会导致脉冲持续时间和脉冲频率之间的权衡。峰值功率(或脉冲能量)。到目前为止,已经从10 MHz的Yb:KYW体振荡器发出了峰值功率为2.3 MW(能量为1μJ)的脉冲。但是,脉冲持续时间限制为430 fs。类似地,从23.7 MHz的Yb:CALGO体振荡器产生峰值功率为1.3 MW,持续时间为323 fs的脉冲。另一方面,直接从一个27 MHz的Yb:CALGO体振荡器演示了持续时间为145 fs的短脉冲,但峰值功率降低了0.16 MW(24 nJ能量)。最近,我们展示了一个来自Yb:KGW体振荡器的重复频率为77 MHz的67 fs脉冲,平均输出功率为3W。
兆瓦峰值功率水平低于100 fs Yb:KGW振荡器
再生放大器
瓦特级高重复率Yb:KGW再生放大器使用声光开关。到目前为止,获得的脉冲能量约为数十微焦耳。
300 kHz飞秒Yb:KGW再生放大器
[1] Major A , Cisek R , Greenhalgh C , et al. A diode-pumped high power extended cavity femtosecond Yb:KGW laser: From development to applications in nonlinear microscopy[C]// Photonics North 2006. 2006. |
[2] Zhao H , Major A . Megawatt peak power level sub-100 fs Yb:KGW oscillators[J]. Optics Express, 2014, 22(25):30425-31. |
[3] Paunescu G , Hein J , Sauerbrey R . 100-fs diode-pumped Yb:KGW mode-locked laser[J]. Applied Physics B, 2004, 79(5):555-558. |
[4] Kuleshov N V , Lagatsky A A , Shcherbitsky V G , et al. CW laser performance of Yb and Er,Yb doped tungstates[J]. Applied Physics B, 1997, 64(4):409-413. |
[5] Holtom G R . Mode-locked Yb:KGW laser longitudinally pumped by polarization-coupled diode bars[J]. Optics Letters, 2006, 31(18):2719-21. |
[6] Kuleshov N V , Lagatsky A A , Podlipensky A V , et al. Pulsed laser operation of Y b-dope d KY(WO(4))(2) and KGd(WO(4))(2).[J]. Optics Letters, 1997, 22(17):1317-9. |
[7] Zhao H , Major A . Powerful 67 fs Kerr-lens mode-locked prismless Yb:KGW oscillator[J]. Optics Express, 2013, 21(26):31846-31851. |
[8] Pekarek S , Fiebig C , Stumpf M C , et al. Diode-pumped gigahertz femtosecond Yb:KGW laser with a peak power of 3.9 kW[J]. Optics Express, 2010, 18(16):16320-16326. |
[9] Hellstroem J E , Bjurshagen S , Pasiskevicius V , et al. Efficient Yb:KGW lasers end-pumped by high-power diode bars[J]. Applied Physics B, 2006, 83(2):235-239. |
[10] Major A , D Sandkuijl, Barzda V . Efficient frequency doubling of a femtosecond Yb:KGW laser in a BiB3O6 crystal[J]. Optics Express, 2009, 17(14):12039-42. |
[11] S Chénais, Druon F , Balembois F , et al. Thermal lensing measurements in diode-pumped Yb-doped GdCOB, YCOB, YSO, YAG and KGW[J]. Optical Materials, 2003, 22(2):129-137. |
[12] Major A , D Sandkuijl, Barzda V . A diode-pumped continuous-wave Yb:KGW laser with Ng-axis polarized output[J]. Laser Physics Letters, 2010, 6(11):779-781. |
[13] Hellstrm J E , Bjurshagen S , Pasiskevicius V . Laser performance and thermal lensing in high-power diode-pumped Yb:KGW with athermal orientation[J]. Applied Physics B, 2006, 83(1):55-59. |
[14] Akbari R , Zhao H , Fedorova K A , et al. Quantum-Dot Saturable Absorber and Kerr Lens Mode-Locked Yb:KGW Laser with >300 kW of Peak Power[J]. Optics Letters, 2016, 41(16). |
[15] Russbueldt P , Mans T , Weitenberg J , et al. Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier[J]. Optics Letters, 2010, 35(24):4169-71. |
[16] Sandkuijl D , Cisek R , Major A , et al. Differential microscopy for fluorescence-detected nonlinear absorption linear anisotropy based on a staggered two-beam femtosecond Yb:KGW oscillator[J]. Biomedical Optics Express, 2010, 1(3):895-901. |
[17] Hellstrm J , Henricsson H , Pasiskevicius V , et al. Polarization-tunable Yb:KGW laser based on internal conical refraction[J]. Optics Letters, 2007, 32(19):2783-2785. |
[18] Joel A , Berger, Michael J , et al. High-power, femtosecond, thermal-lens-shaped Yb:KGW oscillator.[J]. Optics express, 2008. |
[19] Major A , Cisek R , Barzda V . Development of diode-pumped high average power continuous-wave and ultrashort pulse Yb:KGW lasers for nonlinear microscopy[C]// Commercial and Biomedical Applications of Ultrafast Lasers VI. International Society for Optics and Photonics, 2006. |
[20] Alexander, Klenner, Matthias, et al. A gigahertz multimode-diode-pumped Yb:KGW enables a strong frequency comb offset beat signal[J]. Optics Express, 2013. |
[21] Erhard S , Gao J , Giesen A , et al. High power Yb:KGW and Yb:KYW thin disk laser operation[C]// Conference on Lasers & Electro-optics. IEEE, 2001. |
[22] Zhao H , Major A . Orthogonally polarized dual-wavelength Yb:KGW laser induced by thermal lensing[J]. Applied Physics B, 2016, 122(6):1-6. |
[23] Akbari R , Zhao H , Major A . High-power continuous-wave dual-wavelength operation of a diode-pumped Yb:KGW laser[J]. Optics Letters, 2016, 41(7):1601. |
[24] T Balčiūnas, OD Mücke, P Mišeikis, et al. Carrier envelope phase stabilization of a Yb:KGW laser amplifier[J]. Optics Letters, 2011, 36(16):3242. |
[25] Lagatsky A A , Abdolvand A , Kuleshov N V . Passive Q switching and self-frequency Raman conversion in a diode-pumped Yb:KGd(WO4)2 laser[J]. Optics Letters, 2000, 25(9):616-8. |
[26] Molis G , Adomavicius R , Krotkus A , et al. Terahertz time-domain spectroscopy system based on femtosecond Yb:KGW laser[J]. Electronics Letters, 2007, 43(3):190-191. |
[27] Hoos F , Li S , Meyrath T P , et al. Thermal lensing in an end-pumped Yb : KGW slab laser with high power single emitter diodes[J]. Optics Express, 2008, 16(9):6041-6049. |
[28] Kisel V E , Rudenkov A S , Pavlyuk A A , et al. High-power, efficient, semiconductor saturable absorber mode-locked Yb:KGW bulk laser[J]. Optics Letters, 2015, 40(12):2707-10. |
发表回复