现已发现掺Yb的CaGdAlO4晶体(Yb:CALGO)在生产高功率和超短激光脉冲方面显示出卓越的性能。它具有宽而平滑的发射带宽,可以产生非常短的脉冲(<100 fs)。另外,它的高导热率使其能够保持高功率抽运(2 at.%的Yb:CALGO沿a和c轴的导热率分别为6.9和6.3 WK-1 m-1);已经证明了非常短的脉冲和高平均功率飞秒振荡器的产生。
Yb:CaGdAlO4(Yb:CALGO)–用于高功率和超短(飞秒)激光器的Yb掺杂晶体
最近发现,Yb3+:CaGdAlO4对于二极管泵浦短脉冲锁模激光器的开发非常有趣。与掺钛蓝宝石晶体相比(自90年代初以来,选择超短激光系统使用啁啾脉冲放大技术开发可产生非常短而强大的脉冲),Yb:CALGO可以通过非常高效和高功率直接泵浦半导体激光器(绿色激光泵浦的钛蓝宝石晶体)。
参数
掺杂浓度 | 1-10% |
平行性 | 10〞 |
垂直性 | 10ˊ |
表面质量 | 20/10 |
表面平整度 | <λ/10@632.8nm |
通光孔径 | >90% |
倒角 | 0.1mm@45° |
厚度/直径公差 | ±0.05 mm |
化学式 | Yb:CaGdAlO4 (Yb:CALGO) |
晶体结构 | 四方晶系K2NiF4 类型结构 |
熔点 | 1840°C |
导热系数/(W·m-1·K-1) | 11.4(未掺杂) |
6.3(2% Yb:CALGO) | |
5(5% Yb:CALGO) | |
抗热震性(W.m-1 / 2) | >4.5 |
热膨胀率/(10-6·K-1) | 35 |
发射带宽*(FWHM)(nm) | 80 |
发射波长(nm) | 1018-1052 |
最小理论持续时间(fs) | 14 |
中央发射峰(nm) | 1050 |
吸收(通常泵浦)(nm) | 980 |
发射截面(10-20 cm2) | 0.8 |
荧光寿命(μs) | 420 |
σemτ(μscm2) | 336 |
量子缺陷 | <0.8% |
材料 | 发射带宽(FWHM)(nm) | 最小理论持续时间(fs) | 中央发射峰 | 吸收(通常泵浦)(nm) |
Yb:YAG | 9 | 124 | 1031 | 942 |
Yb:Glass | 35 | 31 | 1020 | 975 |
Yb:GdCOB | 44 | 26 | 1044 | 976 |
Yb:BOYS | 60 | 18 | 1025 | 975 |
Yb:KGW | 25 | 44 | 1023 | 981 |
Yb:KYW | 24 | 46 | 1025 | 981 |
Yb:SYS | 73 | 16 | 1040 | 979 |
Yb:YVO4 | 30 | 36 | 1008 | 984 |
Yb:CaF2 | 30 | 36 | 1047 | 980 |
Yb:CALGO | 80 | 14 | 1050 | 980 |
案例
特点
应用
参考文献
新闻
案例
Yb:CALGO 晶体案例(一)
规格:5×5×3,3×3×3 mm;
2% Yb:CALGO;
两面抛光
特点
- 高导热率
- 大增益带宽
- 宽广的发射带宽
- 低折射率温度梯度
- 高功率InGaAs激光二极管覆盖吸收带
应用
- 固态飞秒振荡器
- 超快固态激光器-时间分辨光谱,多光子成像,微加工,屈光手术,粒子加速,X射线生成,聚变等。
- 锁模激光
- BAW设备
- 二极管泵浦短脉冲Modelock激光器
- 飞秒激光技术
- 双色双脉冲方案-Yb:CALGO,可以生成不同波长的双脉冲,据我们所知,这是双色飞秒双脉冲操作的首次演示。获得了非常宽的光谱,带宽大于30 nm(图4)。该光谱可以用两个高斯拟合:一个以1040 nm为中心,带宽为21nm,另一个以1057nm为中心,带宽为10nm,幅度较低(60%)。
参考文献
[1] Sujith M , Arkady M . Diode-pumped 45fs Yb:CALGO laser oscillator with 1.7MW of peak power[J]. Optics Letters, 2018, 43(10):2324. |
[2] Boudeile J , Hanna M , Georges P , et al. Continuous-wave and femtosecond laser operation of Yb:CaGdAlO4 under high-power diode pumping[J]. Optics Letters, 2007, 32(14):1962-4. |
[3] Diebold A , Emaury F , Saraceno C J , et al. 62-fs Pulses from a SESAM Modelocked Yb:CALGO Thin Disk Laser[C]// Advanced Solid State Lasers. 2013. |
[4] P Sévillano, Georges P , Druon F , et al. 32-fs Kerr-lens mode-locked Yb:CaGdAlO 4 oscillator optically pumped by a bright fiber laser[J]. Optics Letters, 2014, 39(20):6001-6004. |
[5] Agnesi A , Greborio A , F Pirzio, et al. 40-fs Yb3+:CaGdAlO4 laser pumped by a single-mode 350-mW laser diode.[J]. Optics Express, 2012, 20(9):10077-10082. |
[6] Caracciolo E , Kemnitzer M , Guandalini A , et al. 28-W, 217 fs solid-state Yb:CAlGdO4 regenerative amplifiers.[J]. Optics Letters, 2013, 38(20):4131-4133. |
[7] Ricaud S , Jafrres A , Loiseau P , et al. Yb:CaGdAlO4 Thin-Disk Laser. IEEE, 2011. |
[8] Beil K , Deppe B , Kr?Nkel C . Yb:CaGdAlO4 thin-disk laser with 70% slope efficiency and 90nm wavelength tuning range[J]. Optics Letters, 2013, 38(11):1966-1968. |
[9] Gong M , Xing F , Shen Y , et al. Wavelength-tunable Hermite–Gaussian modes and an orbital-angular-momentum-tunable vortex beam in a dual-off-axis pumped Yb:CALGO laser[J]. Optics Letters, 2018, 43(2):291. |
[10] F Pirzio, Kemnitzer M , Guandalini A , et al. Ultrafast, solid-state oscillators based on broadband, multisite Yb-doped crystals[J]. Optics Express, 2016. |
[11] Loiko P , Druon F , Georges P , et al. Thermo-optic characterization of Yb:CaGdAlO_4 laser crystal[J]. Optical Materials Express, 2014. |
[12] Pouysegur J , Delaigue M , Zaouter Y , et al. Sub-100-fs Yb:CALGO nonlinear regenerative amplifier[J]. Optics Letters, 2013, 38(23):5180-5183. |
[13] Greborio A , Guandalini A , Au J . Sub-100 fs pulses with 12.5-W from Yb:CALGO based oscillators[J]. Proceedings of SPIE – The International Society for Optical Engineering, 2012, 8235:25. |
[14] Pirzio F , Cafiso S , Kemnitzer M , et al. Sub-50-fs widely tunable Yb:CaYAlO4 laser pumped by 400-mW single-mode fiber-coupled laser diode[J]. Optics Express, 2015, 23(8):9790. |
[15] Diebold A , Emaury F , Schriber C , et al. SESAM mode-locked Yb:CaGdAlO4 thin disk laser with 62 fs pulse generation[J]. Optics Letters, 2013, 38(19):3842-3845. |
[16] Petit J , Goldner P , Viana B , et al. Quest of athermal solid state laser: case of Yb:CaGdAlO4[C]// Photonics Europe. International Society for Optics and Photonics, 2006. |
[17] Zhao H , Major A . Powerful 67 fs Kerr-lens mode-locked prismless Yb:KGW oscillator[J]. Optics Express, 2013, 21(26):31846-31851. |
[18] F Druon, Ricaud S , Papadopoulos D N , et al. On Yb:CaF2 and Yb:SrF2 : Review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance[J]. Optical Materials Express, 2011, 1(3). |
[19] F Druon, Olivier M , A Jaffrès, et al. Magic mode switching in Yb:CaGdAlO4 laser under high pump power[J]. Optics Letters, 2013, 38(20):4138-4141. |
[20] Papadopoulos D N , Boudeile J , Martial I , et al. Low-repetition-rate femtosecond operation in extended-cavity mode-locked Yb:CALGO laser[J]. Optics Letters, 2009, 34(2):196-198. |
[21] Petit J , Goldner P , Viana B . Laser emission with low quantum defect in Yb : CaGdAlO4[J]. Optics Letters, 2005, 30(11):1345. |
[22] Norbert M , P Clément, Fran?Ois L , et al. Kerr lens mode-locked Yb:CALGO thin-disk laser[J]. Optics Letters, 2018, 43(4):879. |
[23] Calendron A L , ?ankaya, Hüseyin, K?Rtner F X . High-energy kHz Yb:KYW dual-crystal regenerative amplifier[J]. Optics Express, 2014, 22(20):24752-62. |
[24] Caracciolo E , Kemnitzer M , Guandalini A , et al. High pulse energy multiwatt Yb:CaAlGdO4 and Yb:CaF2 regenerative amplifiers[J]. Optics Express, 2014, 22(17):19912-8. |
[25] Calendron A L , Lederer M , Cankaya H , et al. High power Yb:CALGO multi-crystal oscillator[C]// The European Conference on Lasers and Electro-Optics. IEEE, 2013. |
[26] Klenner A , Golling M , Keller U . High peak power gigahertz Yb:CALGO laser[J]. Optics Express, 2014, 22(10):11884-91. |
[27] Ricaud S , Jaffres A , Wentsch K , et al. Femtosecond Yb:CaGdAlO4 thin-disk oscillator[J]. Optics Letters, 2012, 37(19):3984-6. |
[28] Hasse K , Calmano T , Deppe B , et al. Efficient Yb3+:CaGdAlO4 bulk and femtosecondlaser-written waveguide lasers[J]. Optics Letters, 2015, 40(15):3552-5. |
[29] Calendron A L . Dual-crystal Yb:CALGO high power laser and regenerative amplifier[J]. Optics Express, 2013, 21(22):26174-26181. |
[30] Agnesi A , Greborio A , Pirzio F , et al. Diode-pumped passively mode-locked tunable Yb:CALGO solid-state laser[J]. Journal of the Optical Society of America B Optical Physics, 2013, 30(6):1513-1516. |
新闻
发表回复