Nd:YAP的化学式为 Nd3+: YAlO3,结构畸变钙钛矿,属于斜六方晶系,空间群为Pbnm,a,b,c轴相互垂直,属于负单轴晶体。并且是各向异性的。在众多掺钕激光晶体中,Nd:YAP晶体不仅具有高导热性,而且在4F3/2–4 I13/2跃迁处具有较大的激发发射截面。它们是目前已知的最有效的激光晶体之一,以1300nm的高功率工作,该晶体主要由LD泵浦。1300nm激光器广泛用于医学,光纤通信和军事领域。此外,水分子在此激光波段具有良好的吸收能力。这使其具有很好的止血能力,并广泛用于止血、神经外科手术、病理组织切除和除皱等激光治疗。另外,Nd:YAP晶体具有自然的双折射特性,对于克服激光的热去极化和非线性频率转换非常有益。
参数
材料 | Nd: YAP |
取向 | <5° |
平行性 | ≤10″ |
垂直性 | ≤5′ |
表面质量 | 10-5 (MIL-O-13830A) |
波前失真 | λ/8 @ 633nm |
表面平整度 | ≤ λ/10 @632.8nm |
通光孔径 | >95 % |
长度公差 | +0.5/-0mm |
厚度/直径公差 | ±0.05 mm |
损坏阈值 | ≥500MW/cm2 |
晶体结构 | 斜方晶– Pbnm |
晶格常数 | a=5,176, b=5,307, c=7,355 |
密度 | 5,35 g/cm3 |
熔点 | 1870°C |
导热系数 | 0,11 W/(cm K) |
热光学系数(dn / dT) | na:9.7×10-6 K-1 nc:14.5×10-6 K-1 |
热膨胀/(10-6•K-1 @ 25°C) | 9.5 (a 轴), 4.3(b轴), 10.8(c轴) |
硬度(莫氏) | 8.5 |
剪切模量/ Gpa | 2.2×1012 dyn/cm2 |
比热 | 400 J/(kg K) |
线性色散δn/δT[10-6K-1] | 9.7 (na) |
激光跃迁 | 4F3/2→4I9/2 930 nm 4F3/2→4I11/2 1079 nm |
4F3/2→4I13/2 1340 nm 4F3/2→4I13/2 1432 nm | |
激光波长 | 930nm 1079nm 1340nm |
荧光寿命 | 170ms |
折射率@ 1064 nm | na=1,929, nb=1,943, nc=1,952 |
波长 (nm) | 发射截面10-19cm2 | ||
a-cut | b-cut | c-cut | |
1079 | 2.05 | 1.76 | 1.38 |
1340 | 1.13 | 0.97 | 0.78 |
1432 | 0.34 |
特点
应用
参考文献
新闻
特点
- 高导热率
- 受激发射截面大
- 高激光增益
- 低激光阈值
- 各向异性
应用
参考文献
[1] Huang C H , Zhang G , Wei Y , et al. 1.3414 μm Nd:YAP pulse laser in Q-switched mode[J]. Optics Communications, 2006, 260(1):248-250. |
[2] Yong W , Zhang G , Huang C H , et al. A single wavelength 1339 nm Nd:YAP pulsed laser[J]. Optics Communications, 2009, 282(22):4397-4400. |
[3] Rocca J P , Fornaini C , Brulat N , et al. CO2 and Nd:YAP laser interaction with lithium disilicate and Zirconia dental ceramics: A preliminary study[J]. Optics & Laser Technology, 2014, 57:216-223. |
[4] Chen X , Yu Y , Tao G , et al. High-power Continuous-wave Diode-side-pumped Nd:YAP/LBO 670.7nm Red Laser[J]. Optik, 2016, 127(3):1094-1096. |
[5] Zhu H , Huang C , Ge Z , et al. High-power CW diode-side-pumped 1341nm Nd:YAP laser[J]. Optics Communications, 2007, 270(2):296-300. |
[6] Yong W , Ge Z , Huang C , et al. High power Nd:YAG lasers operating at 1.3μm wave band[J]. Infrared Physics & Technology, 2008, 51(2):91-94. |
[7] Bonnet L , Boulesteix R , Matre A , et al. Influence of (Nd+Y)/Al ratio on sintering behavior and optical features of Y3-xNdxAl5O12 ceramics for laser applications[J]. Optical Materials, 2018, 77:264-272. |
[8] Wang X , Wang S , Rhee H , et al. LD end pumped mode locked and cavity dumped Nd:YAP laser at 1.34 μm[J]. Optics Communications, 2011, 284(12):3014-3017. |
[9] Wang S , Rhee H , Wang X , et al. LD end pumped, actively mode locked and passively Q-switched Nd:YAP laser at 1341 nm[J]. Optics Communications, 2010, 283(4):570-573. |
[10] Li X , Pan Q , Jing J , et al. LD pumped intracavity frequency-doubled and frequency-stabilized Nd:YAP/KTP laser with 1.1 W output at 540 nm[J]. Optics Communications, 2002, 201(1-3):165-171. |
[11] Guy O , Kubecek V , Barthelemy A . Mode-locked diode-pumped Nd:YAP laser[J]. Optics Communications, 1996, 130(1-3):41-43. |
[12] Boucher M , Musset O , Boquillon J P , et al. Multiwatt CW diode end-pumped Nd:YAP laser at 1.08 and 1.34 μm: Influence of Nd doping level[J]. Optics Communications, 2002, 212(1-3):139-148. |
[13] Shaolin, Xue, and, et al. Passive mode-locking of a Nd:YAP laser at 1.3414 μm by using a convex-antiresonant ring unstable resonator[J]. Optics Communications, 1996. |
[14] Wang S , Wang X , Rhee H , et al. Pulsed Nd:YAP laser at 1432 nm pumped with high power laser diode[J]. Optics Communications, 2010, 283(14):2881-2884. |
新闻
发表回复