Nd:KGW晶体是一种可以实现高浓度掺杂的激光晶体,因为该晶体可以与高浓度的Nd离子混合并且具有较大的发射面积,因此其单脉冲和低重复激光性能优于Nd:YAG 。Nd:KGW晶体的吸收带在808 nm处,可以有效地与LD泵浦光源耦合(发射波长为808 nm),从而提高其发光效率。此外,它的半高和半宽为12 nm,使其能够适应LD发射波长随温度的漂移,这有利于进行二极管泵浦KGw激光实验和器件研究。Nd:KGW不仅可以实现自由振荡,Q开关,锁模操作,还可以实现拉曼转换。
Nd:KGW晶体是由受激拉曼散射产生的晶体,经过倍频后可以成为可见光波段的多波长光源。
Nd:KGW晶体的拉曼特性取决于其高激发光束截面、低泵浦阈值、高输出能量、高转换效率以及两个高拉曼增益系数(768和901 cm-1)。拉曼晶体的基频光分别为911 nm,1067 nm和1351 nm,经过倍频后可产生0.455 um,0.533 um和65 um的红,黄和蓝光,可用于材料加工,光通信,遥感,医药,环境监测,精密计量等领域。
参数
Nd浓度 | 2.2%(cw),3%(quasi-cw) |
荧光寿命 | 130 μs |
受激发射截面 | 3.7*10-19 cm2 |
跃迁波长 | 1067 nm |
导热系数 | Ka=2.6 W/Km |
Kb=3.8 W/Km | |
Kc=3.4 W/Km | |
dn / dT | 0.4*10-6 K-1 |
折射率@ 1.06μm | np=1.978 |
nm=2.014 | |
ng=2.049 | |
热膨胀系数 | (100):4*10-6 K-1 |
(010):3.6*10-6 K-1 | |
(001):8.5*10-6 K-1 | |
密度(g * cm-3) | 7.248 |
比热容Cp | 500 Jkg-1K-1 |
激光波长(nm) | 1067 |
发射截面(pm2)a | 32.3 |
增益带宽(nm) | 2.73 |
荧光寿命(μs) | 110 at 3% doping |
导热系数(Wm-1K-1) | ~3 |
特点
应用
参考文献
新闻
特点
- 掺杂浓度高
- 激发截面高
- 拉曼增益系数高
- 与LD的良好耦合
- 吸收带宽较宽
- 激光阈值低
应用
1067nm:
Nd:KGW是近红外区域中固态激光工程最有效的活性介质之一。与其他工作在1μm左右的广泛使用的掺Nd激光晶体(例如Nd:YAG和Nd:YVO)相比,Nd:KGW具有一些出色的性能。可以实现高掺杂浓度的Nd离子和高斜率效率。该晶体以其高发射截面(高于Nd:YAG的截面)而闻名,因此具有高效的连续波(CW),调Q和锁模操作。此外,主体的双折射导致强偏振发射,这对于进一步的频率转换是有利的。由于主体的高三阶非线性,Nd:KGW晶体和激光被广泛用于通过受激拉曼散射产生多个波长。
- 调Q固态激光器
- 自拉曼固体激光器
- 锁模激光器
热带二极管泵浦的多瓦连续波Nd:KGW激光器
参考文献
[1] Kalisky Y Y , Scheps R , Hoffman H J , et al. Efficient diode-pumped Nd:KGW laser grown by top nucleated floating crystal method: Part II[J]. Proceedings of SPIE – The International Society for Optical Engineering, 2004, 5332:28-35. |
[2] Graf T , Balmer J E . Lasing properties of diode-laser-pumped Nd:KGW[J]. Optical Engineering, 1995, 34(8):2349-2352. |
[3] Demidovich A A , Shkadarevich A P , Danailov M B , et al. Comparison of cw laser performance of Nd:KGW, Nd:YAG, Nd:BEL, and Nd:YVO4 under laser diode pumping[J]. Applied Physics B, 1998, 67(1):11-15. |
[4] Kushawaha V , Banerjee A , Major L . High-efficiency flashlamp-pumped Nd:KGW laser[J]. Applied Physics B, 1993, 56(4):239-242. |
[5] Grabtchikov A S , Kuzmin A N , Lisinetskii V A , et al. Passively Q-switched 1.35 μm diode pumped Nd:KGW laser with V:YAG saturable absorber[J]. Optical Materials, 2001, 16(3):349-352. |
[6] Musset O , Boquillon J P . Comparative laser study of Nd:KGW and Nd:YAG near 1.3 μm[J]. Applied Physics B, 1997, 64(4):503-506. |
[7] Grabtchikov A S , Kuzmin A N , Lisinetskii V A , et al. Stimulated Raman scattering in Nd:KGW laser with diode pumping[J]. Journal of Alloys & Compounds, 2000, 300(none):300-302. |
[8] Lisinetskii V A , Grabtchikov A S , Demidovich A A , et al. Nd:KGW/KGW crystal: efficient medium for continuous-wave intracavity Raman generation[J]. Applied Physics B, 2007, 88(4):499-501. |
[9] Kushawaha V , Michael A , Major L . Effect of Nd Concentration on the Nd:KGW Laser[J]. APPLIED PHYSICS B LASERS AND OPTICS, 1994. |
[10] Soulard R , Zinoviev A , Doualan J L , et al. Detailed characterization of pump-induced refractive index changes observed in Nd:YVO(4), Nd:GdVO(4) and Nd:KGW.[J]. Optics Express, 2010, 18(2):1553-68. |
[11] Karlitschek P , Hillrichs G . Active and passive Q-switching of a diode pumped Nd:KGW-laser[J]. Applied Physics B, 1996, 64(1):21-24. |
[12] Flood C J , Walker D R , Driel H . CW diode pumping and FM mode locking of a Nd: KGW laser[J]. Applied Physics B, 1995, 60(2-3):309-312. |
[13] Kalisky Y , Kravchik L , Labbe C . Repetitive modulation and passively Q-switching of diode-pumped Nd-KGW laser[J]. Optics Communications, 2001, 189(1-3):113-125. |
[14] Huang, Jianhong, Lin, et al. Short pulse eye-safe laser with a stimulated Raman scattering self-conversion based on a Nd:KGW crystal.[J]. Optics letters, 2007, 32(9):1096-8. |
[15] R Moncorgé, Chambon B , Rivoire J Y , et al. Nd doped crystals for medical laser applications[J]. Optical Materials, 1997, 8(1-2):109-119. |
[16] Halim M , Talukder R C , Waritanant T , et al. Passive mode-locking of Nd:KGW laser with hot band diode pumping[C]// 2016 Photonics North (PN). Laser Physics Letters, 2016. |
[17] Kushawaha V , Yan Y , Chen Y . Efficiency of diode-pumped 1.35 m laser from Nd:KGW[J]. Applied Physics B, 1996, 62(5):533-535. |
[18] Musset O , Boquillon J P . Flashlamp-pumped Nd:KGW laser at repetition rates up to 50 Hz[J]. Applied Physics B, 1997, 65(1):13-18. |
[19] AA Demidovich, VA Lisinetskii, W Kiefer,等. Continuous-wave Raman generation in a diode-pumped Nd~(3+):KGd(WO_(4))_(2) laser. |
[20] Abdolvand A , Wilcox K G , Kalkandjiev T K , et al. Conical refraction Nd:KGd(WO4)2 laser[J]. Optics Express, 2010, 18(3):2753. |
[21] Yumashev K V , Savitski V G , Kuleshov N V , et al. Laser performance of N g -cut flash-lamp pumped Nd:KGW at high repetition rates[J]. Applied Physics B, 2007, 89(1):39-43. |
[22] Esmeria J M , Ishii H , Sato M , et al. Efficient continuous-wave lasing operation of Nd:KGd(WO4)2 at 1.067 μm with diode and Ti:sapphire laser pumping[J]. Optics Letters, 1995, 20(14):1538-40. |
[23] Atanasov P A , Tomov R I , Perrie?Re J , et al. Growth of Nd:potassium gadolinium tungstate thin-film waveguides by pulsed laser deposition[J]. Appl.phys.lett, 2000, 76(18):2490-2492. |
[24] Major A , Langford N , Graf T , et al. Diode-pumped passively mode-locked Nd:KGd(WO4)2 laser with 1-W average output power[J]. Optics Letters, 2002, 27(16):1478. |
[25] Stankov K A , Marowsky G . High-efficiency multicolor Q-switched Nd3+:KGd(WO4)2 laser[J]. Applied Physics B, 1995, 61(2):213-215. |
[26] Chen Y , Major L , Kushawaha V . Efficient laser operation of diode-pumped Nd:KGd(WO4)2 crystal at 1.067 μm[J]. Applied Optics, 1996, 35(18):3203-3206. |
[27] Bogdanovich M V , Grigor’Ev A V , Lantsov K I , et al. A high-power optical parametric oscillator based on a master Nd : KGW laser with a high repetition rate[J]. Quantum Electronics, 2017, 47(4):308-312. |
新闻
发表回复