Er-YAG,掺铒钇铝石榴石(Er:Y3Al5O12或Er:YAG)结合了不同的输出波长以及Er-YAG优异的热性能和光学性能。这是一种优秀的激光波长为2.94μm的激光晶体。这个波长是所有现有波长中最容易被水和羟基磷灰石吸收的波长,同时被认为是一种高表面切割激光。它是一种众所周知的医学应用材料。
Er YAG的发射波长为2940nm,位于吸水峰的位置,可以被水分子强烈吸收。因此,它被广泛应用于整形外科和牙科领域。目前,我们参与的项目包括激光采血仪,它采用Er:YAG棒的两侧涂层和氙气灯侧面泵浦的结构。Er-YAG激光波长是改善多种皮肤状况和衰老的绝佳选择,包括色素沉着不良,光化性光损伤,日光弹性变性,痤疮和创伤性瘢痕形成,细纹和轻度至中度的皱纹病,粗糙的皮肤质地和皮肤松弛。
50%Er:YAG 晶体用于2940nm激光器
规格: Φ5*100mm, Φ5*110mm, Φ5*130mm, Φ6*120mm;
镀膜:S1:AR@2940nm R<0.2% ; S2:AR@2940nm R<0.2%;
50%Er:YAG 晶体用于2940nm激光器
规格: Φ3*33mm, Φ3*35mm, φ3*50mm, 10×18×0.8mm;
镀膜:S1, HR@2940nm, R>99.8%; S2, PR@2940nm, T=8-9%
2.5%Er:YAG 晶体用于1645nm激光器
规格:dia4*60mm;
镀膜:双面镀膜:AR/AR@1530&1645nm
Er:YAG晶体案例(四)
规格:5mm*5mm*4mm;
镀膜:抛光,不镀膜
Er:YAG晶体案例(五)
Er3+ 掺杂:0.25 at%;
规格:φ4*80 mm;
镀膜:不镀膜
Er:YAG晶体案例(六)
Er3+ 掺杂:15%,10%;
规格:3.5*3.5*10 mm;
镀膜:不镀膜
参数
方向 | [100] or [100] <± 0.5。 |
平行度 | 10〞 |
垂直度 | 5ˊ |
表面质量 | 5-Oct |
波前失真 | <λ/8@632 nm |
表面平整度 | <λ/10@632.8nm |
通光孔径 | >90% |
倒角 | 0.1mm@45° |
厚度/直径公差 | ±0.05 mm |
最大尺寸 | 直径:2mm-50mm,长度:5mm-180mm |
镀膜 | < 0.25% @ 2940 nm |
晶体结构 | 立方 – la3d |
晶格常数 | 12.01Å |
密度 | 4.56-5.11 g/cm3 |
熔点 | 1950°C |
导热系数/(W·m-1·K-1 @ 25°C) | 0.14W |
比热容/(J·g-1·K-1) | 0.59 |
抗热震性 | 790W/m |
热膨胀率/(10-6·K-1 @ 25°C) | 7.8 |
硬度(莫氏) | 8.5 |
杨氏模量/ GPa | 317 |
剪切模量/ Gpa | 54.66 |
消光比/ dB | 30 |
精密研磨 | 精密研磨 400#Grit |
泊松比 | 0.25 |
激光跃迁 | 4I11/2 → 4I13/2 (高掺); 4I13/2 → 4I15/2 (低掺) |
激光波长 | 2940 nm (高掺); 1645 nm (低掺) |
光子能量 | 6.75×10-20J@2940nm |
泵吸收带宽 | 600~800 nm (高掺); 1530 nm (低掺) |
损伤阈值 | >500MW/cm2 |
发射截面 | 3×10-20 cm2 |
荧光寿命 | 0.23 ms (高掺); 2~5 ms (低掺) |
折光率 | 1.7838@2940 nm |
高掺杂浓度
丰富的能级结构
出色的光学质量
低散射损耗
高输出和损坏阈值
[1] Asadpour S H , Soleimani H R . Role of Er3+ ion concentration and incoherent pumping field on optical bistability in Er3+:YAG crystal[J]. Physics Letters A, 2014, 331:98-104. |
[2] Akihiro Yamaji and Hiraku Ogino and Yutaka Fujimoto and Akira Suzuki and Takayuki Yanagida and Yuui Yokota and Shunsuke Kurosawa and Akira Yoshikawa. Scintillation properties of Er-doped \\{Y3Al5O12\\} single crystals[J]. Radiation Measurements, 2013. |
[3] Swiderski J , Skorczakowski M , Zajac A . High power, pulsed flash-lamp pumped erbium laser designed for medical applications. IEEE, 2008. |
[4] Hu T , Wang F , Ye B , et al. Thermal Lensing Spectroscopy Analysis of Er:YAG Crystal Rod: Thermal Focal Length Measure. IEEE, 2011. |
[5] Oku R , Tanaka F , Tsukasaki N , et al. The influence of Er. YAG laser application in fenestration to the inner ear[J]. Auris Nasus Larynx, 2006, 33(4):387-390. |
[6] Larat C , Schwarz M , Lallier E , et al. 100mJ Q-Switched Er:YAG diode-pumped laser system[C]// International Quantum Electronics Conference. 2013. |
[7] Skorczakowski M , Nyga P , Zajac A , et al. 2.94 μm Er:YAG laser Q-switched with RTP Pockels cell[C]// Conference on Lasers & Electro-optics Europe. IEEE, 2003. |
[8] Nemec M , Jelinkova H , Sulc J , et al. Resonantly pumped Er:YAG and Er:YAP lasers[C]// European Conference on Lasers & Electro-optics & the European Quantum Electronics Conference Cleo Europe-eqec. IEEE, 2009. |
[9] A Zajac, M Skorczakowski, P Nyga,等. High-power LiNbO3 Pockels cell Q-switched flash lamp-pumped Er:YAG laser as a microsurgery instrument for ophthalmologic applications[C]// Lasers and Electro-Optics Europe, 2005. CLEO/Europe. 2005 Conference on. IEEE, 2005. |
[10] Huailiang, Xu, and, et al. Effect of concentration of the Er3+ ion on electromagnetically induced transparency in Er3+:YAG crystal[J]. Physics Letters A, 2002. |
[11] Guo L , Li M , Li T , et al. Inband pumped passively Q-switched Er:YAG laser at 1645 nm using WS2[J]. Optics Communications, 2017:S0030401817300615. |
[12] Brunken M , Casper L , Genz H , et al. Influence of doping the pump-chamber material in a flashlamp pumped Er:YAG laser[J]. Optics & Laser Technology, 2003, 35(5):331-333. |
[13] He Z , Chen L , Shimada Y , et al. Mechanical properties and molecular structure analysis of subsurface dentin after Er:YAG laser irradiation[J]. J Mech Behav Biomed Mater, 2017:274-282. |
[14] Georgescu S , Lupei V , Petraru A , et al. Excited-state-absorption in low concentrated Er:YAG crystals for pulsed and cw pumping[J]. Journal of Luminescence, 2001, 93(4):281-292. |
[15] Bubb D , Sezer A , Harris D , et al. Steady-state mechanism for polymer ablation by a free-running Er:YAG laser[J]. Applied Surface ence, 2006, 253(5):2386-2392. |
[16] Eichler H J , Liu B , Kayser M , et al. Er:YAG-laser at 2.94m Q-switched by a FTIR-shutter with silicon output coupler and polarizer[J]. OPTICAL MATERIALS -AMSTERDAM-, 1996, 5(4):259-266. |
[17] A E P , A D N P , B M G K , et al. The influence of the Q-switched and free-running Er:YAG laser beam characteristics on the ablation of root canal dentine – ScienceDirect[J]. Applied Surface Science, 2004, 233( 1–4):234-243. |
[18] D Lezal, J Pedlíková, J Horák. GeO2-PbO glassy system for infrared fibers for delivery of Er:YAG laser energy[J]. Journal of Non-Crystalline Solids, 1996, 196(none):178-182. |
[19] Zu N , Yang H , Dai Z . Different processes responsible for blue pumped, ultraviolet and violet luminescence in high-concentrated Er 3+:YAG and low-concentrated Er 3+:YAP crystals[J]. Physica B Condensed Matter, 2008, 403(1):174-177. |
[20] Hamedi, Reza H . Enormous enhancements of the Kerr nonlinearity at C-band telecommunication wavelength in an Er3+-doped YAG crystal[J]. Physica B Physics of Condensed Matter, 2014, 442:60-65. |
[21] Du S , Xu J , Dong X , et al. Sensitivity of upconversion mechanisms to excitation laser wavelength in Er3+-doped YAG[J]. Journal of Luminescence, 2010, 130(5):872-876. |
[22] Tobler W J , Durisch W . High-performance selective Er-doped YAG emitters for thermophotovoltaics[J]. Applied Energy, 2008, 85(6):483-493. |
[23] Yu Y , Wu Z , Zhang S . Concentration effects of Er 3+ ion in YAG:Er laser crystals[J]. Journal of Alloys & Compounds, 2000, 302(1-2):204-208. |
[24] Wang Z . Optical bistability via coherent and incoherent fields in an Er 3+-doped yttrium–aluminum–garnet crystal[J]. Optics Communications, 2010, 283(17):3291-3295. |
[25] Attmann T , Quaden R , Theisen-Kunde D , et al. Er:YAG laser-assisted resection of human calcified heart valves[J]. Medical Laser Application, 2008, 22(1):7-14. |
[26] Georgescu S , Toma O , Ivanov I . Upconversion from the 4I13/2 and 4I11/2 levels in Er:YAG[J]. Journal of Luminescence, 2005, 114(1):43-52. |
[27] Radik K , Pavel M , Davit Z , et al. Electronic excitation energy transfer processes in Er:YAG under variable pump duration[J]. Optical Materials, 2018, 83:55-60. |
[28] Frentzen M , Santaella M , Matson E . Er:YAG laser-assisted fissure sealing[J]. International Congress, 2003, 1248:197-198. |
[29] Lin T C , Wang K H , Chang Y C . Er:YAG laser-assisted non-surgical approach for periodontal infrabony defects[J]. Journal of Dental Sciences, 2019, 14( 1):101-102. |
[30] Dreyer E F , Stagg L , Trembathreichert S , et al. Fabrication and Characterization of Fiber Waveguides from Single-Crystal Er3+-Doped YAG[C]// Lasers & Electro-optics. IEEE, 2015. |
[31] Neme K , Luka M , Mo?Ina J . Variable square pulse vs conventional PFN pumping of Er:YAG laser[J]. Optics & Laser Technology, 2012, 44(3):664-668. |
Er:YAG晶体的生长及检验 – 2020/12/21 – 南京光宝光电科技有限公司
发表回复